Page 193 - 2022_03-Haematologica-web
P. 193
Letters to the Editor
Funding: this work was supported in part by the JSPS KAKEN- HI grant numbers JP16K11504, JP17H05104, JP17KK0169, JP18K16118, JP18K08329, JP18H06294, JP19K21382 and 19K22719; and the Research Clusters program of Tokushima University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
1. Miyazaki T, Zhao Z, Ichihara Y, et al. Mechanical regulation of bone homeostasis through p130Cas-mediated alleviation of NF- kappaB activity. Sci Adv. 2019;5(9):eaau7802.
2. Friedman MA, Zhang Y, Wayne JS, Farber CR, Donahue HJ. Single limb immobilization model for bone loss from unloading. J Biomech. 2019;83:181-189.
7. Asano J, Nakano A, Oda A, et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia. 2011;25(7):1182-1188.
8. Teramachi J, Tenshin H, Hiasa M, et al. TAK1 is a pivotal thera- peutic target for tumor progression and bone destruction in myeloma. Haematologica. 2021;106(5):1401-1413.
9. Hiasa M, Teramachi J, Oda A, et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myelo- ma. Leukemia. 2015;29(1):207-217.
10. Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimula- tion of bone in vivo reduces osteocyte expression of Sost/scle- rostin. J Biol Chem. 2008;283(9):5866-5875.
11. Terpos E, Christoulas D, Katodritou E, et al. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-borte- zomib monotherapy. Int J Cancer. 2012;131(6):1466-1471.
12. Terpos E, Berenson J, Raje N, Roodman GD. Management of bone disease in multiple myeloma. Expert Rev Hematol. 2014;7(1):113-
3. Amblard D, Lafage-Proust MH, Laib A, et al. Tail suspension
induces bone loss in skeletally mature mice in the C57BL/6J strain 125.
but not in the C3H/HeJ strain. J Bone Miner Res. 2003;18(3):561-
569.
4.Nakashima T, Hayashi M, Takayanagi H. New insights into
osteoclastogenic signaling mechanisms. Trends Endocrinol
Metab. 2012;23(11):582-590.
5. Abe M, Hiura K, Wilde J, et al. Osteoclasts enhance myeloma cell
growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood. 2004;104(8):2484-2491.
6. Lawson MA, McDonald MM, Kovacic N, et al. Osteoclasts con- trol reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 2015;6:8983.
13. Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E. Serum sclerostin levels positively cor- relate with lumbar spinal bone mineral density in post- menopausal women--the six-month effect of risedronate and teri- paratide. Osteoporos Int. 2012;23(3):1171-1176.
14. Rummler M, Ziouti F, Bouchard AL, et al. Mechanical loading pre- vents bone destruction and exerts anti-tumor effects in the MOPC315.BM.Luc model of myeloma bone disease. Acta Biomater. 2021;119:247-258.
15. Pagnotti GM, Chan ME, Adler BJ, et al. Low intensity vibration mitigates tumor progression and protects bone quantity and qual- ity in a murine model of myeloma. Bone. 2016;90:69-79.
haematologica | 2022; 107(3)
749