Page 291 - 2022_01-Haematologica-web
P. 291

RINF maintenance of SMAD7 sustains human erythropoiesis
Invest Dermatol. 2017;137(11):2260-2269. 51. Akel S, Petrow-Sadowski C, Laughlin MJ, Ruscetti FW. Neutralization of autocrine transforming growth factor-beta in human cord blood CD34(+)CD38(-)Lin(-) cells pro- motes stem-cell-factor-mediated erythro- poietin-independent early erythroid pro- genitor development and reduces terminal differentiation. Stem Cells. 2003;21(5):557-
567.
52. Gao X, Lee HY, da Rocha EL, et al. TGF-
beta inhibitors stimulate red blood cell pro- duction by enhancing self-renewal of BFU- E erythroid progenitors. Blood. 2016;128 (23):2637-2641.
53. Thompson NL, Flanders KC, Smith JM, Ellingsworth LR, Roberts AB, Sporn MB. Expression of transforming growth factor- beta 1 in specific cells and tissues of adult and neonatal mice. J Cell Biol. 1989;108 (2):661-669.
54. Carrancio S, Markovics J, Wong P, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870-882.
55. Bewersdorf JP, Zeidan AM. Transforming growth factor (TGF)-beta pathway as a therapeutic target in lower risk myelodys- plastic syndromes. Leukemia. 2019;33(6): 1303-1312.
56. Fenaux P, Kiladjian JJ, Platzbecker U.
Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019;133(8):790-794.
57. Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine beta-tha- lassemia. Blood. 2014;123(25):3864-3872.
58. Lio CJ, Yuita H, Rao A. Dysregulation of the TET family of epigenetic regulators in hematopoietic malignancies. Blood. 2019;134 (18): 1487-1497.
59. Yan H, Wang Y, Qu X, et al. Distinct roles for TET family proteins in regulating human erythropoiesis. Blood. 2017;129 (14):2002-2012.
60. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788-800.
61. Wei L, Zhao S, Wang G, et al. SMAD7 methylation as a novel marker in athero- sclerosis. Biochem Biophys Res Commun. 2018;496(2):700-705.
62. Yang Q, Chen HY, Wang JN, et al. Alcohol promotes renal fibrosis by activating Nox2/4-mediated DNA methylation of Smad7. Clin Sci (Lond). 2020;134(2):103- 122.
63.Bian EB, Huang C, Wang H, et al. Repression of Smad7 mediated by DNMT1
determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett. 2014;224(2):175-185.
64. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syn- dromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147- 1152.
65. Yue L, Bartenstein M, Zhao W, et al. Efficacy of ALK5 inhibition in myelofibro- sis. JCI insight. 2017;2(7):e90932.
66. Zhang H, Kozono DE, O'Connor KW, et al. TGF-beta inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi anemia. Cell Stem Cell. 2016;18(5):668-681.
67. Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with beta-thalassemia. Blood. 2019;133(12):1279-1289.
68.Verma A, Suragani RN, Aluri S, et al. Biological basis for efficacy of activin recep- tor ligand traps in myelodysplastic syn- dromes. J Clin Invest. 2020;130(2):582-589.
69.Cheng W, Wang F, Feng A, Li X, Yu W. CXXC5 attenuates pulmonary fibrosis in a bleomycin-induced mouse model and MLFs by suppression of the CD40/CD40L pathway. Biomed Res Int. 2020;2020: 7840652.
haematologica | 2022; 107(1)
283


































































































   289   290   291   292   293