Page 290 - 2022_01-Haematologica-web
P. 290
A. Astori et al.
References
1.Pendino F, Nguyen E, Jonassen I, et al. Functional involvement of RINF, retinoid- inducible nuclear factor (CXXC5), in nor- mal and tumoral human myelopoiesis. Blood. 2009;113(14):3172-3181.
2. Jerez A, Gondek LP, Jankowska AM, et al. Topography, clinical, and genomic corre- lates of 5q myeloid malignancies revisited. J Clin Oncol. 2012;30(12):1343-1349.
3.Kuhnl A, Valk PJ, Sanders MA, et al. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood. 2015;125(19): 2985-2994.
4. Stoddart A, Qian Z, Fernald AA, et al. Retroviral insertional mutagenesis identi- fies the del(5q) genes, CXXC5, TIFAB and ETF1, as well as the Wnt pathway, as potential targets in del(5q) myeloid neo- plasms. Haematologica. 2016;101(6):e232- 236
5. Treppendahl MB, Mollgard L, Hellstrom- Lindberg E, Cloos P, Gronbaek K. Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC5 in MDS and AML with deletion 5q. Eur J Haematol. 2013;90(3):259-260.
6. Astori A, Fredly H, Aloysius TA, et al. CXXC5 (retinoid-inducible nuclear factor, RINF) is a potential therapeutic target in high-risk human acute myeloid leukemia. Oncotarget. 2013;4(9):1438-1448.
7. Bruserud O, Reikvam H, Fredly H, et al. Expression of the potential therapeutic tar- get CXXC5 in primary acute myeloid leukemia cells - high expression is associat- ed with adverse prognosis as well as altered intracellular signaling and transcrip- tional regulation. Oncotarget. 2015;6(5): 2794-2811.
8. Benedetti I, De Marzo AM, Geliebter J, Reyes N. CXXC5 expression in prostate cancer: implications for cancer progression. Int J Exp Pathol. 2017;98(4):234-243.
9. Knappskog S, Myklebust LM, Busch C, et al. RINF (CXXC5) is overexpressed in solid tumors and is an unfavorable prognostic factor in breast cancer. Ann Oncol. 2011;22(10):2208-2215.
10. Zhang M, Wang R, Wang Y, et al. The CXXC finger 5 protein is required for DNA damage-induced p53 activation. Sci China C Life Sci. 2009;52(6):528-538.
11. Aras S, Pak O, Sommer N, et al. Oxygen- dependent expression of cytochrome c oxi- dase subunit 4-2 gene expression is mediat- ed by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 2013;41(4):2255-2266.
12. Ko M, An J, Bandukwala HS, et al. Modulation of TET2 expression and 5- methylcytosine oxidation by the CXXC domain protein IDAX. Nature. 2013;497 (7447):122-126.
13. L'Hote D, Georges A, Todeschini AL, et al. Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles. Hum Mol Genet. 2012;21(14):3264-3274.
14. Li G, Ye X, Peng X, et al. CXXC5 regulates differentiation of C2C12 myoblasts into myocytes. J Muscle Res Cell Motil. 2014;35(5-6):259-265.
15. Ma S, Wan X, Deng Z, et al. Epigenetic reg- ulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214(5): 1471-1491.
16. Marshall PA, Hernandez Z, Kaneko I, et al. Discovery of novel vitamin D receptor interacting proteins that modulate 1,25- dihydroxyvitamin D3 signaling. J Steroid Biochem Mol Biol. 2012;132(1-2):147-159.
17. Yasar P, Ayaz G, Muyan M. Estradiol-estro- gen receptor alpha mediates the expression of the CXXC5 gene through the estrogen response element-dependent signaling pathway. Sci Rep. 2016;6:37808.
18. Ayaz G, Razizadeh N, Yasar P, et al. CXXC5 as an unmethylated CpG dinu- cleotide binding protein contributes to estrogen-mediated cellular proliferation. Sci Rep. 2020;10(1):5971.
19.Long HK, Blackledge NP, Klose RJ. ZF- CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans. 2013;41(3):727-740.
20. Melamed P, Yosefzon Y, David C, Tsukerman A, Pnueli L. Tet enzymes, vari- ants, and differential effects on function. Front Cell Dev Biol. 2018;6:22.
21. Andersson T, Sodersten E, Duckworth JK, et al. CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells. J Biol Chem. 2009;284(6):3672-3681.
22. Kim MS, Yoon SK, Bollig F, et al. A novel Wilms tumor 1 (WT1) target gene negative- ly regulates the WNT signaling pathway. J Biol Chem. 2010;285(19):14585-14593.
23. Kim HY, Yoon JY, Yun JH, et al. CXXC5 is a negative-feedback regulator of the Wnt/beta-catenin pathway involved in osteoblast differentiation. Cell Death Differ. 2015;22(6):912-920.
24.Lee SH, Kim MY, Kim HY, et al. The Dishevelled-binding protein CXXC5 nega- tively regulates cutaneous wound healing. J Exp Med. 2015;212(7):1061-1080.
25. Pardali K, Moustakas A. Actions of TGF- beta as tumor suppressor and pro-metasta- tic factor in human cancer. Biochim Biophys Acta. 2007;1775(1):21-62.
26. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in home- ostasis and cancer. Nat Rev Cancer. 2003;3(11):807-821.
27. Zermati Y, Varet B, Hermine O. TGF-beta1 drives and accelerates erythroid differentia- tion in the epo-dependent UT-7 cell line even in the absence of erythropoietin. Exp Hematol. 2000;28(3):256-266.
28. Blank U, Karlsson S. TGF-beta signaling in the control of hematopoietic stem cells. Blood. 2015;125(23):3542-3550.
29. Krystal G, Lam V, Dragowska W, et al. Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med. 1994;180(3):851-860.
30. Ruscetti FW, Akel S, Bartelmez SH. Autocrine transforming growth factor-beta regulation of hematopoiesis: many out- comes that depend on the context. Oncogene. 2005;24(37):5751-5763.
31. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF- beta family signalling. Nature. 2003;425(6958):577-584.
32. Shi Y, Massague J. Mechanisms of TGF- beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685-700.
33. Bhagat TD, Zhou L, Sokol L, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling. Blood. 2013;121(15):2875-2881.
34.Zhou L, McMahon C, Bhagat T, et al. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res.
2011;71(3):955-963.
35.Zhou L, Nguyen AN, Sohal D, et al.
Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112(8):3434-3443.
36. Freyssinier JM, Lecoq-Lafon C, Amsellem S, et al. Purification, amplification and char- acterization of a population of human ery- throid progenitors. Br J Haematol. 1999;106 (4):912-922.
37. Gautier EF, Ducamp S, Leduc M, et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. 2016;16 (5):1470-1484.
38. Inman GJ, Nicolas FJ, Callahan JF, et al. SB- 431542 is a potent and specific inhibitor of transforming growth factor-beta superfam- ily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62(1):65-74.
39. Millot GA, Vainchenker W, Dumenil D, Svinarchuk F. Differential signalling of NH2-terminal flag-labelled thrombopoi- etin receptor activated by TPO or anti- FLAG antibodies. Cell Signal. 2004;16(3): 355-363.
40. Amsellem S, Ravet E, Fichelson S, Pflumio F, Dubart-Kupperschmitt A. Maximal lentivirus-mediated gene transfer and sus- tained transgene expression in human hematopoietic primitive cells and their progeny. Mol Ther. 2002;6(5):673-677.
41. Papageorgis P, Lambert AW, Ozturk S, et al. Smad signaling is required to maintain epi- genetic silencing during breast cancer pro- gression. Cancer Res. 2010;70(3):968-978.
42. Lecoq-Lafon C, Verdier F, Fichelson S, et al. Erythropoietin induces the tyrosine phos- phorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidyli- nositol 3-kinase. Blood. 1999;93(8):2578- 2585.
43. Merryweather-Clarke AT, Atzberger A, Soneji S, et al. Global gene expression analysis of human erythroid progenitors. Blood. 2011;117(13):e96-108.
44.
An X, Schulz VP, Li J, et al. Global transcrip- tome analyses of human and murine termi- nal erythroid differentiation. Blood. 2014;123(22):3466-3477.
45.Keller MA, Addya S, Vadigepalli R, et al. Transcriptional regulatory network analy- sis of developing human erythroid progen- itors reveals patterns of coregulation and potential transcriptional regulators. Physiol Genomics. 2006;28(1):114-128.
46. Pellagatti A, Cazzola M, Giagounidis AA, et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and kary- otype. Blood. 2006;108(1):337-345.
47. Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome predic- tion in myelodysplastic syndromes. Nat Commun. 2015;6:5901.
48. Ravichandran M, Lei R, Tang Q, et al. Rinf regulates pluripotency network genes and Tet enzymes in embryonic stem cells. Cell Rep. 2019;28(8):1993-2003.
49. Kim HY, Yang DH, Shin SW, et al. CXXC5 is a transcriptional activator of Flk-1 and mediates bone morphogenic protein- induced endothelial cell differentiation and vessel formation. FASEB J. 2014;28(2):615- 626.
50. Lee SH, Seo SH, Lee DH, Pi LQ, Lee WS, Choi KY. Targeting of CXXC5 by a com- peting peptide stimulates hair regrowth and wound-induced hair neogenesis. J
282
haematologica | 2022; 107(1)