Page 34 - 2021_09-Haematologica-web
P. 34
R. Svanberg et al.
ERK1/2 and protects BTK wild-type MYD88-mutated cells by a paracrine mech- anism. Blood. 2018;131(18):2047-2059.
9. Davids MS, Deng J, Wiestner A, et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resist- ance in chronic lymphocytic leukemia. Blood. 2012;120(17):3501-3509.
10. Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia. 2020;34(8):2012- 2024.
11. Os A, Bürgler S, Ribes AP, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013;4(3):566-577.
12. van Attekum MHA, van Bruggen JAC, Slinger E, et al. CD40 signaling instructs chronic lymphocytic leukemia cells to attract monocytes via the CCR2 axis. Haematologica. 2017;102(12):2069-2076.
13. Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia dis- play dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102(3):562-572.
14.Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodu- lating drug. J Clin Invest. 2008;118(7):2427- 2437.
15. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412- 1421.
16. Riches JC, Davies JK, McClanahan F, et al. T cells from CLLpatients exhibit features of T- cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9): 1612-1621.
17. Giannopoulos K, Schmitt M, Kowal M, Wlasiuk P, Bojarska-Junka A, Dmoszynska A. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep. 2008;20(3):677-682.
18. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apopto- sis through stromal cell-derived factor-1. Blood. 2000;96(8):2655-2663.
19. Burger JA, Burger M, Kipps TJ. Chronic lym- phocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone mar- row stromal cells. Blood. 1999;94(11):3658- 3667.
20. Borge M, Nannini PR, Morande PE, et al. CXCL12 is a costimulator for CD4+ T cell activation and proliferation in chronic lym- phocytic leukemia patients. Cancer Immunol Immunother. 2013;62(1):113-124.
21. Filip AA, Ciseł B, Koczkodaj D, Waş ik- Szczepanek E, Piersiak T, Dmoszyńska A. Circulating microenvironment of CLL: are nurse-like cells related to tumor-associated macrophages? Blood Cells Mol Dis. 2013;50(4):263-270.
22. Gustafson MP, Abraham RS, Lin Y, et al. Association of an increased frequency of CD14+ HLA-DR lo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol. 2012;156(5):674-676.
23. Jitschin R, Braun M, Büttner M, et al. CLL- cells induce IDOhi CD14+HLA-DRlo
myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124(5):750-760.
24. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with nor- mal bone marrow stromal cells. Blood. 1998;91(7):2387-2396.
25.Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167.
26.Nishio M, Endo T, Tsukada N, et al. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lym- phocytic leukemia cells via a paracrine path- way distinct from that of SDF-1α. Blood. 2005;106(3):1012-1020.
27. Manna A, Kellett T, Aulakh S, et al. Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells and Tregs, but restores CD81 T-cell responses. Blood Adv. 2020;4(10):2143-2157.
28. Alhakeem SS, McKenna MK, Oben KZ, et al. Chronic lymphocytic leukemia–derived IL-10 suppresses antitumor immunity. J Immunol. 2018;200(12):4180-4189.
29. Smallwood DT, Apollonio B, Willimott S, et al. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells. Blood. 2016;128(4):542-552.
30. Ravandi F, O’Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother. 2006;55(2):197-209.
31.Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzum- ab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278-1291.
32. Tam CS, Robak T, Ghia P, et al. Efficacy and safety of zanubrutinib in patients with treat- ment-naive chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) with del(17p): initial results from arm C of the Sequoia (BGB-3111-304) trial. Blood. 2019;134(Suppl_1):499.
33. Niemann CU, Herman SEM, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interac- tions by ibrutinib - findings from an investi- gator-initiated phase II study. Clin Cancer Res. 2016;22(7):1572-1582.
34. Yin Q, Sivina M, Robins H, et al. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia. J Immunol. 2017;198(4):1740- 1747.
35. Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and func- tion in CLL patients. J Clin Invest. 2017;127(8):3052-3064.
36. Solman IG, Blum LK, Hoh HY, et al. Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia. Leuk Res. 2020;97:106432.
37. Baptista MJ, Basumallik N, Herman SEM, et al. Ibrutinib increases the clonality of TCR repertoire in patients with chronic lympho- cytic leukemia. Blood. 2018;132(Suppl 1):238.
38. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pres- sure in T lymphocytes. Blood. 2013;122 (15):2539-2549.
39. Herman SEM, Montraveta A, Niemann CU, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(11):2831-2841.
40. Zou YX, Zhu HY, Li XT, et al. The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Hematol Oncol. 2019;37(4):392-400.
41. Papazoglou D, Lesnick CE, Wang V, Kay NE, Shanafelt TD, Ramsay AG. Ibrutinib-based therapy improves anti-tumor T cell killing function allowing effective pairing with anti-PD-L1 immunotherapy compared to traditional FCR chemoimmunotherapy; implications for therapy and correlative immune functional data from the phase III. Blood. 2018;132(Suppl 1):236.
42. De Weerdt I, Hofland T, Lameris R, et al. Improving CLL Vγ9Vδ2-T-cell fitness for cel- lular therapy by ex vivo activation and ibru- tinib. Blood 2018;132(21):2260-2272.
43. Podhorecka M, Goracy A, Szymczyk A, et al. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number. Oncotarget. 2017;8(21):34661-34669.
44. Jadidi-Niaragh F, Ghalamfarsa G, Memarian A, et al. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chron- ic lymphocytic leukemia. Tumor Biol. 2013;34(2):929-940.
45. Herman SEM, Niemann CU, Farooqui M, et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia. 2014;28(11):2188-2196.
46. Ping L, Ding N, Shi Y, et al. The Bruton’s tyrosine kinase inhibitor ibrutinib exerts immunomodulatory effects through regula- tion of tumorinfiltrating macrophages. Oncotarget. 2017;8(24):39218-39229.
47. De Rooij MFM, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 tar- gets B-cell receptor- and chemokine-con- trolled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11): 2590-2594.
48. Da Roit F, Engelberts PJ, Taylor RP, et al. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica. 2015;100(1):77-86.
49. Stiff A, Trikha P, Wesolowski R, et al. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treat- ment. Cancer Res. 2016;76(8):2125-2136.
50. Herman SEM, Mustafa RZ, Jones J, Wong DH, Farooqui M, Wiestner A. Treatment with ibrutinib inhibits BTK- and VLA-4- dependent adhesion of chronic lymphocytic leukemia cells in vivo. Clin Cancer Res. 2015;21(20):4642-4651.
51. Sun C, Tian X, Lee YS, et al. Partial reconsti- tution of humoral immunity and fewer infections in patients with chronic lympho- cytic leukemia treated with ibrutinib. Blood. 2015;126(19):2213-2219.
52. XiaoY,ZouP,WangJ,SongH,ZouJ,LiuL. Lower phosphorylation of p38 MAPK blocks the oxidative stress-induced senes- cence in myeloid leukemic CD34(+)CD38 (- ) cells. J Huazhong Univ Sci Technolog Med Sci. 2012;32(3):328-333.
53. Aarup K, Rotbain EC, Enggaard L, et al. Real-
2322
haematologica | 2021; 106(9)