Page 35 - 2021_09-Haematologica-web
P. 35

Targeting the tumor microenvironment in CLL
world outcomes for 205 patients with chronic lymphocytic leukemia treated with ibrutinib. Eur J Haematol. 2020;105(5):646- 654.
54. Lannutti BJ, Meadows SA, Herman SEM, et al. CAL-101, a p110δ selective phos- phatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591-594.
55. Herman SEM, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activ- ity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078- 2088.
56. Hoellenriegel J, Meadows SA, Sivina M, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chron- ic lymphocytic leukemia. Blood. 2011;118(13):3603-3612.
57. Ali K, Soond DR, Piñeiro R, et al. Inactivation of PI(3)K p110δ breaks regulato- ry T-cell-mediated immune tolerance to can- cer. Nature. 2014;510(7505):407-411.
58. Hanna BS, Roessner PM, Scheffold A, et al. PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia. 2019;33(6):1427-1438.
59. Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinosi- tol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390-3397.
60. Alflen A, Stadler N, Aranda Lopez P, et al. Idelalisib impairs TREM-1 mediated neu- trophil inflammatory responses. Sci Rep. 2018;8(1):1-10.
61. O’Brien SM, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. Blood. 2015;126(25): 2686-2694.
62. Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumum- ab in relapsed and refractory CLL/SLL. Blood. 2018;132(23):2446-2455.
63. Maharaj K, Powers JJ, Achille A, et al. The dual PI3Kδ/CK1e inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells. Blood Adv. 2020;4(13):3072- 3084.
64. Valentin R, Grabow S, Davids MS. The rise of apoptosis: targeting apoptosis in hemato- logic malignancies. Blood. 2018;132(12): 1248-1264.
65. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202- 208.
66. Roberts AW, Ma S, Kipps TJ, et al. Efficacy of venetoclax in relapsed chronic lympho- cytic leukemia is influenced by disease and response variables. Blood. 2019;134(2):111- 122.
67. Leverson JD, Phillips DC, Mitten MJ, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer thera- py. Sci Transl Med. 2015;7(279):279ra40.
68. Wojciechowski S, Tripathi P, Bourdeau T, et al. Bim/Bcl-2 balance is critical for maintain- ing naive and memory T cell homeostasis. J Exp Med. 2007;204(7):1665-1675.
69. Kohlhapp FJ, Haribhai D, Mathew R, et al. Venetoclax increases intratumoral effector T cells and antitumor efficacy in combination
with immune checkpoint blockade. Cancer
Discov. 2020;11(2):68-79.
70. De Weerdt I, Hofland T, De Boer R, et al.
Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642-2652.
71. Thijssen R, Slinger E, Weller K, et al. Resistance to ABT-199 induced by microen- vironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 anti- bodies or kinase inhibitors. Haematologica. 2015;100(8):e302-305.
72. Chanan-Khan AA, Chitta K, Ersing N, et al. Biological effects and clinical significance of lenalidomide-induced tumour flare reaction in patients with chronic lymphocytic leukaemia: in vivo evidence of immune acti- vation and antitumour response. Br J Haematol. 2011;155(4):457-467.
73. Fink AM, Bahlo J, Robrecht S, et al. Lenalidomide maintenance after first-line therapy for high-risk chronic lymphocytic leukaemia (CLLM1): final results from a ran- domised, double-blind, phase 3 study. Lancet Haematol. 2017;4(10):e475-e486.
74. Chen C, Paul H, Wang T, et al. Long-term follow-up of a phase 2 trial of single agent lenalidomide in previously untreated patients with chronic lymphocytic leukaemia. Br J Haematol. 2014;165(5):731- 733.
75. Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-direct- ed T-cell motility by altering Rho GTPase signaling that is reversible with lenalido- mide. Blood. 2013;121(14):2704-2714.
76. Ramsay AG, Gribben JG. Immune dysfunc- tion in chronic lymphocytic leukemia T cells and lenalidomide as an immunomodulatory drug. Haematologica. 2009;94(9):1198-1202.
77. Browning RL, Byrd WH, Gupta N, et al. Lenalidomide induces interleukin-21 pro- duction by T cells and enhances IL21-medi- ated cytotoxicity in chronic lymphocytic leukemia B cells. Cancer Immunol Res. 2016;4(8):697-707.
78. Aue G, Sun C, Liu D, et al. Activation of Th1 immunity within the tumor microenviron- ment is associated with clinical response to lenalidomide in chronic lymphocytic leukemia. J Immunol. 2018;201(7):1967- 1974.
79.Fiorcari S, Martinelli S, Bulgarelli J, et al. Lenalidomide interferes with tumor-pro- moting properties of nurse-like cells in chronic lymphocytic leukemia. Haematologica. 2015;100(2):253-262.
80. Thompson PA, Keating MJ, Hinojosa C, et al. Lenalidomide and rituximab in combina- tion as initial treatment of chronic lympho- cytic leukemia: initial results of a phase II study. Blood. 2014;124(21):1988.
81. Ioannou N, Hagner PR, Stokes M, et al. Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD- L1/PD-1 immunotherapy. Blood. 2020;137 (2):216-231.
82. Brusa D, Serra S, Coscia M, et al. The PD- 1/PD-L1 axis contributes to T-cell dysfunc- tion in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953-963.
83. McClanahan F, Hanna B, Miller S, et al. PD- L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203-211.
84. Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed
CLL. Blood. 2017;129(26):3419-3427.
85. Yan X, Zhang S, Deng Y, Wang P, Hou Q, Xu H. Prognostic factors for checkpoint inhibitor based immunotherapy: an update with new evidences. Front Pharmacol.
2018;9:1050.
86. Kalos M, Levine BL, Porter DL, et al. T cells
with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.
87. Laurin D, Marin V, Biagi E, et al. Exploration of the lysis mechanisms of leukaemic blasts by chimaeric T-cells. J Biomed Biotechnol. 2010;2010:234540.
88. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725-733.
89. Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563-571.
90. Siddiqi T, Soumerai JD, Dorritie KA, et al. Rapid undetectable MRD (uMRD) respons- es in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lym- phocytic lymphoma (CLL/SLL) treated with lisocabtagene maraleucel (liso-cel), a CD19- directed CAR T cell product: updated results from transcend CLL 004, a phase 1/2 study including patients with high-risk disease previously treated with ibrutinib. Blood. 2019;134(Suppl_1):503.
91.Cox MJ, Lucien F, Sakemura R, et al. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia. Mol Ther. 2021;29(5):1918-1932.
92.Robinson HR, Qi J, Cook EM, et al. A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era. Blood. 2018;132(5):521-532.
93.Elías EE, Almejún MB, Colado A, et al. Autologous T-cell activation fosters ABT- 199 resistance in chronic lymphocytic leukemia: rationale for a combined therapy with SYK inhibitors and anti-CD20 mono- clonal antibodies. Haematologica. 2018;103 (10):e458-e461.
94. Burger JA, Sivina M, Jain N, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lym- phocytic leukemia. Blood. 2019;133(10): 1011-1019.
95. Mato AR, Roeker LE, Eyre TA, et al. A retro- spective comparison of venetoclax alone or in combination with an anti-CD20 mono- clonal antibody in R/R CLL. Blood Adv. 2019;3(10):1568-1573.
96. Niemann CU, Levin M-D, Dubois J, et al. Venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2020;137(8):1117-1120.
97. Patel VM, Balakrishnan K, Douglas M, et al. Duvelisib treatment is associated with altered expression of apoptotic regulators that helps in sensitization of chronic lym- phocytic leukemia cells to venetoclax (ABT- 199). Leukemia. 2017;31(9):1872-1881.
98. Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127(9):1117-1127.
99. Stock S, Übelhart R, Schubert ML, et al. Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. Int J Cancer. 2019;145(5):1312-1324.
haematologica | 2021; 106(9)
2323


































































































   33   34   35   36   37