Page 263 - 2021_07-Haematologica-web
P. 263

Case Reports
inant hyperferritinaemia and cataract. Nat Genet. 1995;11(4):
444-446.
9. Girelli D, Corrocher R, Bisceglia L, et al. Molecular basis for the
recently described hereditary hyperferritinemia-cataract syn- drome: a mutation in the iron-responsive element of ferritin L- subunit gene (the "Verona mutation"). Blood. 1995;86(11):4050- 4053.
10.Kato J, Fujikawa K, Kanda M, et al. A mutation, in the iron- responsive element of H ferritin mRNA, causing autosomal dom- inant iron overload. Am J Hum Genet. 2001;69(1):191-197.
11. Yien YY, Ducamp S, van der Vorm LN, et al. Mutation in human CLPX elevates levels of d-aminolevulinate synthase and proto- porphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A. 2017;114(38): e8045-e8052.
12. 13.
Campillos M, Cases I, Hentze MW, Sanchez M. SIREs: searching for iron-responsive elements. Nucleic Acids Res. 2010;38 (Suppl):W360-367.
Luscieti S, Tolle G, Aranda J, et al. Novel mutations in the fer- ritin-L iron-responsive element that only mildly impair IRP bind- ing cause hereditary hyperferritinaemia cataract syndrome. Orphanet J Rare Dis. 2013;8(1):30.
14.Fratz EJ, Clayton J, Hunter GA, et al. Human erythroid 5- aminolevulinate synthase mutations associated with X-linked protoporphyria disrupt the conformational equilibrium and enhance product release. Biochemistry. 2015;54(36):5617-5631.
15. Whitman JC, Paw BH, Chung J. The role of ClpX in erythropoi- etic protoporphyria. Hematol Transfus Cell Ther. 2018;40(2):182- 188.
haematologica | 2021; 106(7)
2033


































































































   261   262   263   264   265