Page 99 - 2021_05-Haematologica-web
P. 99
Zebrafish Hax1-associated neutropenia
anticipate that our model will serve as a platform to iden- tify new avenues for developing tailored therapeutic strategies for patients with CN.
Disclosures
No conflicts of interest to disclose.
Contributions
LD and BB made initial observations; LD performed most of the experiments and contributed to the design of the work; NA performed experiments in the transgenic lines; AMD performed quantitative polymerase chain reaction, immunostaining and flu- orescence in situ hybridization analysis; KW and JS provided useful insights and interpreted the data. BB supervised and sup- ported the study and wrote the manuscript. All authors read and edited the manuscript.
Acknowledgments
The authors would like to thank Patrick Müller (Fredrich Miescher Laboratory, Tübingen) for providing the wild-type TE strain of zebrafish and transgenic lines, Jochen Wittbrodt (Center for Organismal Studies, Heidelberg University) for providing the Cas9 construct, Annisa Claasen and Christine Gottschalk for technical help, and the Institute of Medical Virology and Microbiology for continuous support in confocal microscopy.
Funding
The work in BB’s laboratory is supported by the Deutsche Forschungsgemeinschaft (BA 5766/3-1), Deutsche José Carreras Leukämie-Stiftung (DJCLS11 R/2018), and Wilhelm-Sander- Stiftung.
References
1. Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032.
2.Klein C. Kostmann's disease and HCLS1- associated protein X-1 (HAX1). J Clin Immunol. 2017;37(2):117-122.
3.Boztug K, Ding XQ, Hartmann H, et al. HAX1 mutations causing severe congenital neuropenia and neurological disease lead to cerebral microstructural abnormalities doc- umented by quantitative MRI. Am J Med Genet A. 2010;152A(12):3157-3163.
4. Fadeel B, Grzybowska E. HAX-1: a multi- functional protein with emerging roles in human disease. Biochim Biophys Acta. 2009;1790(10):1139-1148.
5. Germeshausen M, Grudzien M, Zeidler C, et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood. 2008;111(10):4954- 4957.
6. Klein C, Grudzien M, Appaswamy G, et al. HAX1 deficiency causes autosomal reces- sive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007; 39(1):86-92.
7.Yetgin S, Olcay L, Koc A, Germeshausen M. Transformation of severe congenital neutropenia to early acute lymphoblastic leukemia in a patient with HAX1 mutation and without G-CSF administration or receptor mutation. Leukemia. 2008; 22(9):1797.
8.Zeidler C, Germeshausen M, Klein C, Welte K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) muta- tions in severe congenital neutropenia. Br J Haematol. 2009;144(4):459-467.
9. Rosenberg PS, Zeidler C, Bolyard AA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutrope- nia maintained on G-CSF therapy. Br J Haematol. 2010;150(2):196-199.
10. Carlsson G, van't Hooft I, Melin M, et al. Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations. J Intern Med. 2008;264(4):388-400.
11.Hippe A, Bylaite M, Chen M, et al. Expression and tissue distribution of mouse Hax1. Gene. 2006;379:116-126.
12. Grzybowska EA, Zayat V, Konopinski R, et al. HAX-1 is a nucleocytoplasmic shuttling protein with a possible role in mRNA pro-
cessing. FEBS J. 2013;280(1):256-272.
13. Suzuki Y, Demoliere C, Kitamura D, Takeshita H, Deuschle U, Watanabe T. HAX-1, a novel intracellular protein, local- ized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol. 1997;158(6):2736-2744.
14. Yap SV, Vafiadaki E, Strong J, Kontrogianni- Konstantopoulos A. HAX-1: a multifaceted antiapoptotic protein localizing in the mito- chondria and the sarcoplasmic reticulum of striated muscle cells. J Mol Cell Cardiol.
2010;48(6):1266-1279.
15.Chao JR, Parganas E, Boyd K, Hong CY,
Opferman JT, Ihle JN. Hax1-mediated pro- cessing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature. 2008;452(7183):98-102.
16. Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R. The polycystic kidney dis- ease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskele- ton. Proc Natl Acad Sci U S A. 2000; 97(8):4017-4022.
17. Wolkerstorfer S, Schwaiger E, Rinnerthaler M, et al. HAX1 deletion impairs BCR inter- nalization and leads to delayed BCR-medi- ated apoptosis. Cell Mol Immunol. 2016;13(4):451-461.
18. Skokowa J, Klimiankou M, Klimenkova O, et al. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF- triggered granulopoiesis. Nat Med. 2012;18(10):1550-1559
19. Morishima T, Watanabe K, Niwa A, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014;99(1):19-27.
20. Pittermann E, Lachmann N, MacLean G, et al. Gene correction of HAX1 reversed Kostmann disease phenotype in patient- specific induced pluripotent stem cells. Blood Adv. 2017;1(14):903-914.
21. Avagyan S, Zon LI. Fish to learn: insights into blood development and blood disor- ders from zebrafish hematopoiesis. Hum Gene Ther. 2016;27(4):287-294.
22. Stachura DL, Svoboda O, Campbell CA, et al. The zebrafish granulocyte colony-stim- ulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918-3928.
23. Pazhakh V, Clark S, Keightley MC, Lieschke GJ. A GCSFR/CSF3R zebrafish mutant models the persistent basal neu-
trophil deficiency of severe congenital neu-
tropenia. Sci Rep. 2017;7:44455.
24. Basheer F, Rasighaemi P, Liongue C, Ward AC. Zebrafish granulocyte colony-stimu- lating factor receptor maintains neutrophil number and function throughout the life
span. Infect Immun. 2019;87(2):e00793-18. 25. Liongue C, Hall CJ, O'Connell BA, Crosier P, Ward AC. Zebrafish granulocyte colony- stimulating factor receptor signaling pro- motes myelopoiesis and myeloid cell
migration. Blood. 2009;113(11):2535-2546. 26. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome.
Nature. 2013;496(7446):498-503. 27.Oyarbide U, Topczewski J, Corey SJ. Peering through zebrafish to understand inherited bone marrow failure syndromes.
Haematologica. 2019;104(1):13-24.
28. Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility in a zebrafish model of WHIM
syndrome. Blood. 2010;116(15):2803-2811. 29. Zhang CY, Yin HM, Wang H, et al. Transforming growth factor-beta1 regu- lates the nascent hematopoietic stem cell niche by promoting gluconeogenesis.
Leukemia. 2018;32(2):479-491.
30. Renshaw SA, Loynes CA, Trushell DM,
Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108(13):3976- 3978.
31. Hall C, Flores MV, Storm T, Crosier K, Crosier P. The zebrafish lysozyme C pro- moter drives myeloid-specific expression in transgenic fish. BMC Dev Biol. 2007;7:42.
32. Fink M, Flekna G, Ludwig A, Heimbucher T, Czerny T. Improved translation efficien- cy of injected mRNA during early embry- onic development. Dev Dyn. 2006; 235(12):3370-3378.
33. Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intu- itive, flexible and reliable CRISPR/Cas9 tar- get prediction tool. PLoS One. 2015; 10(4):e0124633.
34. Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol. 2004; 271(2):416-430.
35.Kuri P, Ellwanger K, Kufer TA, Leptin M, Bajoghli B. A high-sensitivity bi-directional reporter to monitor NF-kappaB activity in cell culture and zebrafish in real time. J Cell Sci. 2017;130(3):648-657.
haematologica | 2021; 106(5)
1319