Page 40 - 2021_04-Haematologica-web
P. 40

C.A. Di Buduo et al.
1150-1160.
24.Leiva O, Leon C, Kah Ng S, Mangin P,
Gachet C, Ravid K. The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. Am J Hematol. 2018;93(3):430-441.
25. Ward CM, Ravid K. Matrix mechanosensa- tion in the erythroid and megakaryocytic lineages. Cells. 2020;9(4):894.
26. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801.
27.Malara A, Gruppi C, Rebuzzini P, et al. Megakaryocyte-matrix interaction within bone marrow: new roles for fibronectin and factor XIII-A. Blood. 2011;117(8):2476-2483.
28. Balduini A, Pallotta I, Malara A, et al. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet for- mation by human megakaryocytes. J Thromb Haemost. 2008;6(11):1900-1907.
29. Eshghi S, Vogelezang MG, Hynes RO, Griffith LG, Lodish HF. Alpha4beta1 integrin and erythropoietin mediate temporally dis- tinct steps in erythropoiesis: integrins in red cell development. J Cell Biol. 2007;177(5):871-880.
30. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythro- poiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell. 2019;24(3):477-486.
31. Takaku T, Malide D, Chen J, Calado RT, Kajigaya S, Young NS. Hematopoiesis in 3 dimensions: human and murine bone mar- row architecture visualized by confocal microscopy. Blood. 2010;116(15):e41-55.
32. Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood. 2008;112(3):470-478.
33. de Back DZ, Kostova EB, van Kraaij M, van den Berg TK, van Bruggen R. Of macrophages and red blood cells; a complex love story. Front Physiol. 2014;5:9.
34. Modery-Pawlowski CL, Tian LL, Pan V, McCrae KR, Mitragotri S, Sen Gupta A. Approaches to synthetic platelet analogs. Biomaterials. 2013;34(2):526-541.
35. Brown AC, Stabenfeldt SE, Ahn B, et al. Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater. 2014;13(12):1108-1114.
36. Anselmo AC, Modery-Pawlowski CL, Menegatti S, et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. 2014;8(11):11243- 11253.
37. Donovan AJ, Kalkowski J, Szymusiak M, et al. Artificial dense granules: a procoagulant liposomal formulation modeled after platelet polyphosphate storage pools. Biomacromolecules. 2016;17(8):2572-2581.
38.Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299(19):2304-2312.
39.Hardy JF, Bélisle S, Van der Linden P. Combined blood substitute and erythropoi- etin therapy in a severely injured Jehovah's witness. N Engl J Med. 2002;347(9):696- 697;author reply 696-697.
40. Raff JP, Dobson CE, Tsai HM. Transfusion of polymerised human haemoglobin in a patient with severe sickle-cell anaemia. Lancet. 2002;360(9331):464-465.
41. Mer M, Hodgson E, Wallis L, et al. Hemoglobin glutamer-250 (bovine) in South
Africa: consensus usage guidelines from cli- nician experts who have treated patients. Transfusion. 2016;56(10):2631-2636.
42. Merico V, Zuccotti M, Carpi D, et al. The genomic and proteomic blueprint of mouse megakaryocytes derived from embryonic stem cells. J Thromb Haemost. 2012;10(5): 907-915.
43. Liu J, Zhang J, Ginzburg Y, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered ery- thropoiesis. Blood. 2013;121(8):e43-49.
44.Jin H, Kim HS, Kim S, Kim HO. Erythropoietic potential of CD34+ hematopoietic stem cells from human cord blood and G-CSF-mobilized peripheral blood. Biomed Res Int. 2014;2014:435215.
45. Di Buduo CA, Abbonante V, Marty C, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020;135(2):133-144.
46. Kurita R, Suda N, Sudo K, et al. Establishment of immortalized human ery- throid progenitor cell lines able to produce enucleated red blood cells. PLoS One. 2013;8(3):e59890.
47.Liu ZJ, Sola-Visner M. Neonatal and adult megakaryopoiesis. Curr Opin Hematol. 2011;18(5):330-337.
Liu ZJ, Italiano J, Ferrer-Marin F, et al. Developmental differences in megakaryocy- topoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood. 2011;117(15):4106-4117.
Commun. 2016;7:11208.
58.Suzuki D, Flahou C, Yoshikawa N, et al.
iPSC-derived platelets depleted of HLA class I are inert to anti-HLA class I and natural killer cell immunity. Stem Cell Reports. 2020;14(1):49-59.
59. Kobari L, Yates F, Oudrhiri N, et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differen- tiation model. Haematologica. 2012;97(12): 1795-1803.
60. Razaq MA, Taylor S, Roberts DJ, Carpenter L. A molecular roadmap of definitive ery- thropoiesis from human induced pluripotent stem cells. Br J Haematol. 2017;176(6):971- 983.
61. Huang CY, Liu CL, Ting CY, et al. Human iPSC banking: barriers and opportunities. J Biomed Sci. 2019;26(1):87.
62. Ben-David U, Benvenisty N. The tumori- genicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268-277.
63. Ono-Uruga Y, Tozawa K, Horiuchi T, et al. Human adipose tissue-derived stromal cells can differentiate into megakaryocytes and platelets by secreting endogenous throm- bopoietin. J Thromb Haemost. 2016;14(6): 1285-1297.
64. Baer PC. Adipose-derived mesenchymal stromal/stem cells: an update on their phe- notype in vivo and in vitro. World J Stem Cells. 2014;6(3):256-265.
65. Bhatlekar S, Basak I, Edelstein LC, et al. Anti-apoptotic BCL2L2 increases megakary- ocyte proplatelet formation in cultures of human cord blood. Haematologica. 2019;104(10):2075-2083.
66. Matsunaga T, Tanaka I, Kobune M, et al. Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells. 2006;24(12):2877-2887.
67. Balduini A, Di Buduo CA, Malara A, et al. Constitutively released adenosine diphos- phate regulates proplatelet formation by human megakaryocytes. Haematologica. 2012;97(11):1657-1665.
68.Currao M, Balduini CL, Balduini A. High doses of romiplostim induce proliferation and reduce proplatelet formation by human megakaryocytes. PLoS One. 2013;8(1): e54723.
48.
49.
50.
Giarratana MC, Kobari L, Lapillonne H, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23(1):69-74. Zhang X, Ma YN, Zhang JW. Human ery- throid progenitors from adult bone marrow and cord blood in optimized liquid culture systems respectively maintained adult and neonatal characteristics of globin gene expression. Biol Res. 2007;40(1):41-53.
51. Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104(9):2722-2727.
52. Giarratana MC, Rouard H, Dumont A, et al. Proof of principle for transfusion of in vitro- generated red blood cells. Blood. 2011;118(19):5071-5079.
53. Trakarnsanga K, Griffiths RE, Wilson MC, et al. An immortalized adult human erythroid line facilitates sustainable and scalable gen- eration of functional red cells. Nat Commun. 2017;8:14750.
54. Daniels DE, Downes DJ, Ferrer-Vicens I, et al. Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica. 2020;105(8):e389-e394.
55. Takayama N, Nishikii H, Usui J, et al. Generation of functional platelets from human embryonic stem cells in vitro via ES- sacs, VEGF-promoted structures that con- centrate hematopoietic progenitors. Blood. 2008;111(11):5298-5306.
56. Ma F, Ebihara Y, Umeda K, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A. 2008;105(35):13087-13092.
57. Moreau T, Evans AL, Vasquez L, et al. Large- scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat
69.
70.
Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A. Revealing eltrombopag's promotion of human megakaryopoiesis through AKT/ERK- dependent pathway activation. Haematologica. 2016;101(12):1479-1488.
Ye JY, Liang EY, Cheng YS, et al. Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2 and F-actin reorgani- zation. Stem Cells. 2014;32(11):2973-2982.
71. Spinler KR, Shin JW, Lambert MP, Discher DE. Myosin-II repression favors pre/pro- platelets but shear activation generates platelets and fails in macrothrombocytope- nia. Blood. 2015;125(3):525-533.
72. Chang Y, Auradé F, Larbret F, et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood. 2007;109(10):4229-4236.
73. Strassel C, Brouard N, Mallo L, et al. Aryl hydrocarbon receptor-dependent enrich- ment of a megakaryocytic precursor with a high potential to produce proplatelets. Blood. 2016;127(18):2231-2240.
74. Seo H, Chen SJ, Hashimoto K, et al. A β1- tubulin-based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production. Blood Adv.
956
haematologica | 2021; 106(4)


































































































   38   39   40   41   42