Page 41 - 2021_04-Haematologica-web
P. 41
Bioengineering approaches to blood cell production
2018;2(17):2262-2272.
75. Thon JN, Mazutis L, Wu S, et al. Platelet
bioreactor-on-a-chip. Blood. 2014;124(12):
1857-1867.
76. Avanzi MP, Mitchell WB. Ex vivo produc-
tion of platelets from stem cells. Br J
Haematol. 2014;165(2):237-247.
77.Blin A, Le Goff A, Magniez A, et al.
Microfluidic model of the platelet-generat- ing organ: beyond bone marrow biomimet- ics. Sci Rep. 2016;6:21700.
78. Migliaccio AR, Whitsett C, Papayannopoulou T, Sadelain M. The potential of stem cells as an in vitro source of red blood cells for transfusion. Cell Stem Cell. 2012;10(2):115-119.
79. Glen KE, Workman VL, Ahmed F, Ratcliffe E, Stacey AJ, Thomas RJ. Production of ery- throcytes from directly isolated or Delta1 Notch ligand expanded CD34+ hematopoi- etic progenitor cells: process characteriza- tion, monitoring and implications for manu- facture. Cytotherapy. 2013;15(9):1106-1117.
80. Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions- comparison to other cytokines and growth factors. Leukemia. 1998;12(3):371-381.
81. Muta K, Krantz SB, Bondurant MC, Wickrema A. Distinct roles of erythropoi- etin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. J Clin Invest. 1994;94(1):34- 43.
82. Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion. 2008;48(10):2235-2245.
83.Heideveld E, Masiello F, Marra M, et al. CD14+ cells from peripheral blood positive- ly regulate hematopoietic stem and progeni- tor cell survival resulting in increased ery- throid yield. Haematologica. 2015;100(11): 1396-1406.
84. Lopez-Yrigoyen M, Yang CT, Fidanza A, et al. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat Commun. 2019;10(1):881.
85. Baek EJ, Kim HS, Kim JH, Kim NJ, Kim HO. Stroma-free mass production of clinical- grade red blood cells (RBCs) by using polox- amer 188 as an RBC survival enhancer. Transfusion. 2009;49(11):2285-2295.
86. Timmins NE, Athanasas S, Günther M, Buntine P, Nielsen LK. Ultra-high-yield man- ufacture of red blood cells from hematopoi- etic stem cells. Tissue Eng Part C Methods. 2011;17(11):1131-1137.
87. Zhang Y, Wang C, Wang L, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34(+) cells. Stem Cells Transl Med. 2017;6(8):1698-1709.
88.Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scal-
able stirred bioreactors. J Tissue Eng Regen
Med. 2018;12(1):e368-e378.
89. Yang Y, Liu C, Lei X, et al. Integrated bio-
physical and biochemical signals augment megakaryopoiesis and thrombopoiesis in a three-dimensional rotary culture system. Stem Cells Transl Med. 2016;5(2):175-185.
90. Ingber DE. From mechanobiology to devel- opmentally inspired engineering. Philos Trans R Soc Lond B Biol Sci. 2018; 373(1759):20170323.
91.Housler GJ, Miki T, Schmelzer E, et al. Compartmental hollow fiber capillary mem- brane-based bioreactor technology for in vitro studies on red blood cell lineage direc- tion of hematopoietic stem cells. Tissue Eng Part C Methods. 2012;18(2):133-142.
92. Lee E, Han SY, Choi HS, Chun B, Hwang B, Baek EJ. Red blood cell generation by three- dimensional aggregate cultivation of late erythroblasts. Tissue Eng Part A. 2015;21(3- 4):817-828.
93. Fauzi I, Panoskaltsis N, Mantalaris A. Early exposure of murine embryonic stem cells to hematopoietic cytokines differentially directs definitive erythropoiesis and car- diomyogenesis in alginate hydrogel three- dimensional cultures. Stem Cells Dev. 2014;23(22):2720-2729.
94. Allenby MC, Panoskaltsis N, Tahlawi A, Dos Santos SB, Mantalaris A. Dynamic human erythropoiesis in a three-dimension- al perfusion bone marrow biomimicry. Biomaterials. 2019;188:24-37.
95. Elvarsdóttir EM, Mortera-Blanco T, Dimitriou M, et al. A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syn- dromes. Leukemia. 2020;34(1):271-282.
96.Currao M, Malara A, Di Buduo CA, Abbonante V, Tozzi L, Balduini A. Hyaluronan based hydrogels provide an improved model to study megakaryocyte- matrix interactions. Exp Cell Res. 2016;346(1):1-8.
97. Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S, et al. Three-dimensional envi- ronment sustains hematopoietic stem cell differentiation into platelet-producing megakaryocytes. PLoS One. 2015;10(8): e0136652.
98. Aguilar A, Pertuy F, Eckly A, et al. Importance of environmental stiffness for megakaryocyte differentiation and pro- platelet formation. Blood. 2016;128(16): 2022-2032.
99. Sullenbarger B, Bahng JH, Gruner R, Kotov N, Lasky LC. Prolonged continuous in vitro human platelet production using three- dimensional scaffolds. Exp Hematol. 2009;37(1):101-110.
100. Lasky LC, Sullenbarger B. Manipulation of oxygenation and flow-induced shear stress can increase the in vitro yield of platelets from cord blood. Tissue Eng Part C Methods. 2011;17(11):1081-1088.
101. Mostafa SS, Miller WM, Papoutsakis ET. Oxygen tension influences the differentia- tion, maturation and apoptosis of human
megakaryocytes. Br J Haematol. 2000;
111(3):879-889.
102.Shepherd JH, Howard D, Waller AK, et al.
Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials. 2018;182:135-144.
103.Kotha S, Sun S, Adams A, et al. Microvasculature-directed thrombopoiesis in a 3D in vitro marrow microenvironment. PLoS One. 2018;13(4):e0195082.
104. Omenetto FG, Kaplan DL. New opportuni- ties for an ancient material. Science. 2010;329(5991):528-531.
105.Di Buduo CA, Wray LS, Tozzi L, et al. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood. 2015;125(14):2254-2264.
106. Di Buduo CA, Soprano PM, Tozzi L, et al. Modular flow chamber for engineering bone marrow architecture and function. Biomaterials. 2017;146:60-71.
107.Blumberg N, Heal JM, Phillips GL. Platelet transfusions: trigger, dose, benefits, and risks. F1000 Med Rep. 2010;2:5.
108. Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical chal- lenges ahead? Biotechnol J. 2014;9(1):28-38.
109. Timmins NE, Nielsen LK. Blood cell manu- facture: current methods and future chal- lenges. Trends Biotechnol. 2009;27(7):415- 422.
110.Zeuner A, Martelli F, Vaglio S, Federici G, Whitsett C, Migliaccio AR. Concise review: stem cell-derived erythrocytes as upcoming players in blood transfusion. Stem Cells. 2012;30(8):1587-1596.
111. Olivier EN, Zhang S, Yan Z, et al. PSC-RED and MNC-RED: albumin-free and low- transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. Exp Hematol. 2019;75:31-52.
112.Heshusius S, Heideveld E, Burger P, et al. Large-scale in vitro production of red blood cells from human peripheral blood mononu- clear cells. Blood Adv. 2019;3(21):3337-3350.
113.Giani FC, Fiorini C, Wakabayashi A, et al. Targeted application of human genetic vari- ation can improve red blood cell production from stem cells. Cell Stem Cell. 2016;18(1):73-78.
114. Bernecker C, Ackermann M, Lachmann N, et al. Enhanced ex vivo generation of ery- throid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019;28(23):1540-1551.
115.Thon JN, Dykstra BJ, Beaulieu LM. Platelet bioreactor: accelerated evolution of design and manufacture. Platelets. 2017;28(5):472- 477.
116.Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hemato- logic disease and considerations for transfu- sion medicine. Semin Hematol. 2020;57(2): 83-91.
haematologica | 2021; 106(4)
957