Page 203 - 2021_04-Haematologica-web
P. 203
Leukemic GATA1s delays megakaryocyte differentiation
tions resulting in Diamond-Blackfan anemia.
J Clin Invest. 2012;122(7):2439-2443.
12.Li Z, Godinho FJ, Klusmann JH, Garriga- Canut M, Yu C, Orkin SH. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1.
Nat Genet. 2005;37(6):613-619.
13. Byrska-Bishop M, VanDorn D, Campbell
AE, et al. Pluripotent stem cells reveal ery- throid-specific activities of the GATA1 N- terminus. J Clin Invest. 2015;125(3):993- 1005.
14. Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte matura- tion. Blood. 2008;112(7):2738-2749.
15. Driegen S, Ferreira R, van Zon A, et al. A generic tool for biotinylation of tagged pro- teins in transgenic mice. Transgenic Res. 2005;14(4):477-482.
16.Nishikii H, Eto K, Tamura N, et al. Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells. J Exp Med. 2008;205(8):1917-1927.
17. Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073-5084.
18. Keller G, Kennedy M, Papayannopoulou T,
Wiles MV. Hematopoietic commitment dur- ing embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13(1):473-486.
19. Tober J, Koniski A, McGrath KE, et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of defini- tive hematopoiesis. Blood. 2007;109(4): 1433-1441.
20.McGrath KE, Frame JM, Fegan KH, et al. Distinct sources of hematopoietic progeni- tors emerge before HSCs and provide func- tional blood cells in the mammalian embryo. Cell Rep. 2015;11(12):1892-1904.
21. Roy A, Cowan C, Mead A, et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by tri- somy 21. Proc Natl Acad Sci U S A. 2012; 109(43):17579-17584.
22. Bourquin JP, Subramanian A, Langebrake C, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci U S A. 2006;103(9): 3339-3344.
23. Pimkin M, Kossenkov AV, Mishra T, et al. Divergent functions of hematopoietic tran- scription factors in lineage priming and dif- ferentiation during erythro-megakary- opoiesis. Genome Res. 2014;24(12):1932- 1944.
24. Huang Z, Dore LC, Li Z, et al. GATA-2 rein- forces megakaryocyte development in the
absence of GATA-1. Mol Cell Biol. 2009;
29(18):5168-5180.
25. Dubart A, Romeo PH, Vainchenker W,
Dumenil D. Constitutive expression of GATA-1 interferes with the cell-cycle regula- tion. Blood. 1996;87(9):3711-3721.
26. Kadri Z, Shimizu R, Ohneda O, et al. Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol. 2009;7(6): e1000123.
27. Chlon TM, McNulty M, Goldenson B, Rosinski A, Crispino JD. Global transcrip- tome and chromatin occupancy analysis reveal the short isoform of GATA1 is defi- cient for erythroid specification and gene expression. Haematologica. 2015; 100(5):575-584.
28. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood. 1999;94(1):87-96.
29. Klusmann JH, Godinho FJ, Heitmann K, et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakary- opoiesis and leukemogenesis. Genes Dev. 2010;24(15):1659-1672.
30.Woo AJ, Wieland K, Huang H, et al. Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. J Clin Invest. 2013; 123(8):3292-3304.
haematologica | 2021; 106(4)
1119