Page 216 - 2021_02-Haematologica-web
P. 216

C.S. Whyte and N.J. Mutch
Disclosures
No conflicts of interests to disclose.
Contributions
CSW performed the research, analysed the data and wrote the manuscript; NJM designed the research, analysed the data and wrote the manuscript.
Acknowledgments
We would like to thank Ms Michela Donnarumma and Ms
Linda Robertson for their invaluable technical assistance. We thank Dr Colin Longstaff, NIBSC, for invaluable advice on the kinetic assays and data analysis. We acknowledge the Microscopy and Histology Core Facility at the University of Aberdeen for excellent advice and use of the facilities.
Funding
This research was supported by grants FS/11/2/28579 (NJM) and PG/11/1/28461 (NJM, CSW) from the British Heart Foundation.
References
1. Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalci- somes of bacteria and unicellular eukaryotes. J Biol Chem. 2004;279(43):44250-44257.
2.Muller F, Mutch NJ, Schenk WA, et al. Platelet polyphosphates are proinflammato- ry and procoagulant mediators in vivo. Cell. 2009;139(6):1143-1156.
3. Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflamma- tion. Blood. 2012;119(25):5972-5979.
4.Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariens RA. Polyphosphate modifies the fibrin network and down-regu- lates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood. 2010;115(19):3980-3988.
5. Robbins KC, Bernabe P, Arzadon L, Summaria L. NH2-terminal sequences of mammalian plasminogens and plasmin S- carboxymethyl heavy (A) and light (B) chain derivatives. A re-evaluation of the mecha- nism of activation of plasminogen. J Biol Chem. 1973;248(20):7242-7246.
6.Mangel WF, Lin BH, Ramakrishnan V. Characterization of an extremely large, lig- and-induced conformational change in plas- minogen. Science. 1990;248(4951):69-73.
7.Sjoholm I. Studies on the conformational changes of plasminogen induced during acti- vation to plasmin and by 6-aminohexanoic acid. Eur J Biochem. 1973;39(2):471-479.
8.Castellino FJ. Biochemistry of human plas- minogen. Semin Thromb Hemost. 1984; 10(1):18-23.
9.Urano T, Chibber BA, Castellino FJ. The reciprocal effects of epsilon-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human uroki- nase. Proc Natl Acad Sci U S A. 1987; 84(12):4031-4034.
10. Robbins KC, Summaria L, Hsieh B, Shah RJ. The peptide chains of human plasmin. Mechanism of activation of human plas- minogen to plasmin. J Biol Chem. 1967; 242(10):2333-2342.
11. Camiolo SM, Thorsen S, Astrup T. Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptoki- nase-activated human globulin, and plas- min. Proc Soc Exp Biol Med. 1971; 138(1):277-280.
12. Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation- enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci U S A. 1985;
82(15):4939-4943.
13.Choi SH, Collins JN, Smith SA, Davis-
Harrison RL, Rienstra CM, Morrissey JH. Phosphoramidate end labeling of inorganic polyphosphates: facile manipulation of polyphosphate for investigating and modu- lating its biological activities. Biochemistry. 2010;49(45):9935-9941.
14. Mitchell JL, Lionikiene AS, Georgiev G, et al. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity. Blood. 2016; 128(24):2834-2845.
15. Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP. Evidence that the conformation of unligand- ed human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-ter- minal peptide. Biochem J. 1998;333 ( Pt 1):99-105.
16. Claeys H, Vermylen J. Physico-chemical and proenzyme properties of NH2-terminal glu- tamic acid and NH2-terminal lysine human plasminogen. Influence of 6-aminohexanoic acid. Biochim Biophys Acta. 1974; 342(2):351-359.
17. Thorsen S, Mullertz S. Rate of activation and electrophoretic mobility of unmodified and partially degraded plasminogen. Effects of 6- aminohexanoic acid and related com- pounds. Scand J Clin Lab Invest. 1974; 34(2):167-176.
18. Engel R, Brain CM, Paget J, Lionikiene AS, Mutch NJ. Single-chain factor XII exhibits activity when complexed to polyphosphate. J Thromb Haemost. 2014;12(9):1513-1522.
19. Whyte CS, Chernysh IN, Domingues MM, et al. Polyphosphate delays fibrin polymeri- sation and alters the mechanical properties of the fibrin network. Thromb Haemost. 2016;116(5):897-903.
20. Smith SA, Morrissey JH. Polyphosphate enhances fibrin clot structure. Blood. 2008; 112(7):2810-2816.
21. van Zonneveld AJ, Veerman H, Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasmino- gen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. J Biol Chem. 1986; 261(30):14214-14218.
22. Longstaff C, Thelwell C, Williams SC, Silva MM, Szabo L, Kolev K. The interplay between tissue plasminogen activator domains and fibrin structures in the regula- tion of fibrinolysis: kinetic and microscopic studies. Blood. 2011;117(2):661-668.
23.de Vries C, Veerman H, Koornneef E, Pannekoek H. Tissue-type plasminogen acti- vator and its substrate Glu-plasminogen share common binding sites in limited plas- min-digested fibrin. J Biol Chem. 1990; 265(23):13547-13552.
24. Medved L, Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost. 2003;89(3):409-419.
25. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinoly- sis. Proc Natl Acad Sci U S A. 2006; 103(4):903-908.
26. Verhoef JJ, Barendrecht AD, Nickel KF, et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood. 2017;129(12):1707-1717.
27 Dejouvencel T, Doeuvre L, Lacroix R, et al. Fibrinolytic cross-talk: a new mechanism for plasmin formation. Blood. 2010;115(10): 2048-2056.
28. Fredenburgh JC, Nesheim ME. Lys-plas- minogen is a significant intermediate in the activation of Glu-plasminogen during fibri- nolysis in vitro. J Biol Chem. 1992; 267(36):26150-26156.
29. Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982;257(6): 2912-2919.
30. Wohl RC, Summaria L, Robbins KC. Kinetics of activation of human plasmino- gen by different activator species at pH 7.4 and 37 degrees C. J Biol Chem. 1980; 255(5):2005-2013.
31. Suenson E, Bjerrum P, Holm A, et al. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activa- tor-catalyzed plasmin formation. J Biol Chem. 1990;265(36):22228-22237.
32.
33.
Nesheim M, Fredenburgh JC, Larsen GR. The dissociation constants and stoichiome- tries of the interactions of Lys-plasminogen and chloromethyl ketone derivatives of tis- sue plasminogen activator and the variant delta FEIX with intact fibrin. J Biol Chem. 1990;265(35):21541-21548.
Miles LA, Castellino FJ, Gong Y. Critical role for conversion of glu-plasminogen to Lys- plasminogen for optimal stimulation of plas- minogen activation on cell surfaces. Trends Cardiovasc Med. 2003;13(1):21-30.
34. Silva MM, Thelwell C, Williams SC, Longstaff C. Regulation of fibrinolysis by C- terminal lysines operates through plasmino- gen and plasmin but not tissue-type plas- minogen activator. J Thromb Haemost. 2012;10(11):2354-2360.
35. Mondino A, Blasi F. uPA and uPAR in fibri- nolysis, immunity and pathology. Trends Immunol. 2004;25(8):450-455.
36.Killewich LA, Macko RF, Cox K, et al. Regression of proximal deep venous throm- bosis is associated with fibrinolytic enhance- ment. J Vasc Surg. 1997;26(5):861-868.
37. Singh I, Burnand KG, Collins M, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice:
530
haematologica | 2021; 106(2)


































































































   214   215   216   217   218