Page 30 - Haematologica-April 2018
P. 30

R. Marke et al.
eage acute lymphoblastic leukemia. Nat
Genet. 2017;49(8):1211-1218.
74. Zhang J, Ding L, Holmfeldt L, et al. The
genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157-163.
75. Jager R, Gisslinger H, Passamonti F, et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia. 2010;24(7):1290-1298.
76. Crescenzi B, La Starza R, Romoli S, et al. Submicroscopic deletions in 5q- associated malignancies. Haematologica. 2004;89(3): 281-285.
77. de Rooij JD, Beuling E, van den Heuvel- Eibrink MM, et al. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia. Haematologica. 2015;100(9):1151-1159.
78. Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25(2):254-258.
79. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-posi- tive acute lymphoblastic leukemia are asso- ciated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202-5207.
80. van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123(11):1691-1698.
81. Clappier E, Grardel N, Bakkus M, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during main- tenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia. 2015;29(11):2154-2161.
82. Olsson L, Ivanov Ofverholm I, Noren- Nystrom U, et al. The clinical impact of IKZF1 deletions in paediatric B-cell precur- sor acute lymphoblastic leukaemia is inde- pendent of minimal residual disease stratifi- cation in Nordic Society for Paediatric Haematology and Oncology treatment pro- tocols used between 1992 and 2013. Br J Haematol. 2015;170(6):847-858.
83. Ribera J, Morgades M, Zamora L, et al. Prognostic significance of copy number alterations in adolescent and adult patients with precursor B acute lymphoblastic leukemia enrolled in PETHEMA protocols. Cancer. 2015;121(21):3809-3817.
84. Yao QM, Liu KY, Gale RP, et al. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia. BMC Cancer. 2016;16:269.
85. Zhang W, Kuang P, Li H, Wang F, Wang Y. Prognostic significance of IKZF1 deletion in adult B cell acute lymphoblastic leukemia: a meta-analysis. Ann Hematol. 2017;96(2): 215-225.
86. Kobitzsch B, Gokbuget N, Schwartz S, et al. Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR- ABL-negative acute lymphoblastic leukemia. Haematologica. 2017;102(10): 1739-1747.
87. Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lym- phoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48(5):569- 574.
88. Clappier E, Auclerc MF, Rapion J, et al. An intragenic ERG deletion is a marker of an
oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28(1):70-77.
89. Zaliova M, Zimmermannova O, Dorge P, et al. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia. 2014;28(1):182-185.
90. Zhang J, McCastlain K, Yoshihara H, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48(12):1481-1489.
91. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115 (26):5312-5321.
92. Russell LJ, Jones L, Enshaei A, et al. Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2017;56(5):363-372.
93. Katerndahl CDS, Heltemes-Harris LM, Willette MJL, et al. Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol. 2017;18(6):694-704.
94. Matsuda S, Rouault J, Magaud J, Berthet C. In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS Lett. 2001;497(2-3):67-72.
95. Busson M, Carazo A, Seyer P, et al. Coactivation of nuclear receptors and myo- genic factors induces the major BTG1 influ- ence on muscle differentiation. Oncogene. 2005;24(10):1698-1710.
96. van Galen JC, Kuiper RP, van Emst L, et al. BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia. Blood. 2010;115(23):4810-4819.
97. Prevot D, Morel AP, Voeltzel T, et al. Relationships of the antiproliferative pro- teins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex: involvement in estrogen receptor alpha sig- naling pathway. J Biol Chem. 2001;276(13):9640-9648.
98. Lin WJ, Gary JD, Yang MC, Clarke S, Herschman HR. The mammalian immedi- ate-early TIS21 protein and the leukemia- associated BTG1 protein interact with a pro- tein-arginine N-methyltransferase. J Biol Chem. 1996;271(25):15034-15044.
99. Bogdan JA, Adams-Burton C, Pedicord DL, et al. Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its inter- action with the B-cell translocation protein BTG1. Biochem J. 1998;336( Pt 2):471-481.
100.Rouault JP, Prevot D, Berthet C, et al. Interaction of BTG1 and p53-regulated BTG2 gene products with mCaf1, the murine homolog of a component of the yeast CCR4 transcriptional regulatory com- plex. J Biol Chem. 1998;273(35):22563- 22569.
guishes a novel high-risk acute lymphoblas- tic leukemia with Ikaros dysfunction. Oncotarget. 2016;7(29):46014-46027.
104. Trageser D, Iacobucci I, Nahar R, et al. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J Exp Med. 2009;206(8):1739-1753.
105.Iacobucci I, Iraci N, Messina M, et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PloS One. 2012;7(7):e40934.
106.Witkowski MT, Hu Y, Roberts KG, et al. Conserved IKAROS-regulated genes associ- ated with B-progenitor acute lymphoblastic leukemia outcome. J Exp Med. 2017;214(3): 773-791.
107. Kourtidis A, Ngok SP, Anastasiadis PZ. p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci. 2013;116:409-432.
108. Vitanza NA, Zaky W, Blum R, et al. Ikaros deletions in BCR-ABL-negative childhood acute lymphoblastic leukemia are associated with a distinct gene expression signature but do not result in intrinsic chemoresistance. Pediatr Blood Cancer. 2014;61(10):1779- 1785.
109. Churchman ML, Evans K, Richmond J, et al. Synergism of FAK and tyrosine kinase inhi- bition in Ph+ B-ALL. JCI Insight. 2016;1(4).
110. Chan LN, Chen Z, Braas D, et al. Metabolic gatekeeper function of B-lymphoid tran- scription factors. Nature. 2017;542(7642): 479-483.
111. Ge Z, Guo X, Li J, et al. Clinical significance of high c-MYC and low MYCBP2 expres- sion and their association with Ikaros dys- function in adult acute lymphoblastic leukemia. Oncotarget. 2015;6(39):42300- 42311.
112. Ge Z, Zhou X, Gu Y, et al. Ikaros regulation of the BCL6/BACH2 axis and its clinical rel- evance in acute lymphoblastic leukemia. Oncotarget. 2017;8(5):8022-8034.
113. Ma S, Pathak S, Mandal M, et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol. 2010;30(17):4149-4158.
114. Marke R, Havinga J, Cloos J, et al. Tumor suppressor IKZF1 mediates glucocorticoid resistance in B-cell precursor acute lym- phoblastic leukemia. Leukemia. 2016;30(7): 1599-1603.
115. Imamura T, Yano M, Asai D, et al. IKZF1 deletion is enriched in pediatric B-cell pre- cursor acute lymphoblastic leukemia patients showing prednisolone resistance. Leukemia. 2016;30(8):1801-1803.
116. Piovan E, Yu J, Tosello V, et al. Direct rever- sal of glucocorticoid resistance by AKT inhi- bition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766-776.
117. Evangelisti C, Cappellini A, Oliveira M, et al. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol. 2018;233(3):1796-1811.
118. Aries IM, Jerchel IS, van den Dungen RE, et al. EMP1, a novel poor prognostic factor in pediatric leukemia regulates prednisolone resistance, cell proliferation, migration and adhesion. Leukemia. 2014;28(9):1828-1837.
119. Palmi C, Valsecchi MG, Longinotti G, et al. What is the relevance of Ikaros gene dele- tions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica. 2013;98(8):1226-1231.
101.
Tijchon E, van Emst L, Yuniati L, et al. Tumor suppressors BTG1 and BTG2 regu- late early mouse B-cell development. Haematologica. 2016;101(7):e272-276.
102. Farrar M, Harris LH, Kornblau S, et al. B cell transcription factors define a novel tumor suppressor gene network in acute lym- phoblastic leukemia. J Immunol. 2013;190(1 Suppl):52-55.
103.Ge Z, Gu Y, Xiao L, et al. Co-existence of IL7R high and SH2B3 low expression distin-
574
haematologica | 2018; 103(4)


































































































   28   29   30   31   32