Page 29 - Haematologica-April 2018
P. 29
IKZF1 in leukemia and therapy response
casein kinase II restores Ikaros tumor sup- pressor activity and demonstrates therapeu- tic efficacy in high-risk leukemia. Blood. 2015;126(15):1813-1822.
24. Ma H, Qazi S, Ozer Z, et al. Regulatory phosphorylation of Ikaros by Bruton's tyro- sine kinase. PloS one. 2013;8(8):e71302.
25. Uckun FM, Ma H, Zhang J, et al. Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros. Proc Natl Acad Sci USA. 2012;109(44):18072-18077.
26. Gomez-del Arco P, Koipally J, Georgopoulos K. Ikaros SUMOylation: switching out of repression. Mol Cell Biol. 2005;25(7):2688- 2697.
27. Apostolov A, Litim-Mecheri I, Oravecz A, et al. Sumoylation inhibits the growth suppres- sive properties of Ikaros. PloS one. 2016;11(6):e0157767.
28. Lindner S, Kronke J. The molecular mecha- nism of thalidomide analogs in hematologic malignancies. J Mol Med (Berl). 2016;94(12):1327-1334.
29. Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301-305.
30. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305-309.
31. Wang JH, Nichogiannopoulou A, Wu L, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5(6):537-549.
32. Heizmann B, Kastner P, Chan S. Ikaros is absolutely required for pre-B cell differentia- tion by attenuating IL-7 signals. J Exp Med. 2013;210(13):2823-2832.
33. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic line- age restrictions directed by Ikaros. Nat Immunol. 2006;7(4):382-391.
34. Lopez RA, Schoetz S, DeAngelis K, O'Neill D, Bank A. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci USA. 2002;99(2): 602-607.
35. Rao KN, Smuda C, Gregory GD, Min B, Brown MA. Ikaros limits basophil develop- ment by suppressing C/EBP-alpha expres- sion. Blood. 2013;122(15):2572-2581.
36. Malinge S, Thiollier C, Chlon TM, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121(13): 2440-2451.
37. Schjerven H, McLaughlin J, Arenzana TL, et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14(10):1073- 1083.
38. Allman D, Sambandam A, Kim S, et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol. 2003;4(2):168-174.
39. Kirstetter P, Thomas M, Dierich A, Kastner P, Chan S. Ikaros is critical for B cell differenti- ation and function. Eur J Immunol. 2002;32(3):720-730.
40. Sellars M, Reina-San-Martin B, Kastner P, Chan S. Ikaros controls isotype selection during immunoglobulin class switch recom- bination. J Exp Med. 2009;206(5): 1073- 1087.
41. Heizmann B, Sellars M, Macias-Garcia A, Chan S, Kastner P. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways. Biochem Biophys Res Commun. 2016;470(3):714-720.
42. Virely C, Moulin S, Cobaleda C, et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia. 2010;24(6):1200-1204.
43. Dumortier A, Jeannet R, Kirstetter P, et al. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol. 2006;26(1):209-220.
44. Georgopoulos K, Bigby M, Wang JH, et al. The Ikaros gene is required for the develop- ment of all lymphoid lineages. Cell. 1994;79(1):143-156.
45. Papathanasiou P, Perkins AC, Cobb BS, et al. Widespread failure of hematolymphoid dif- ferentiation caused by a recessive niche-fill- ing allele of the Ikaros transcription factor. Immunity. 2003;19(1):131-144.
46. Winandy S, Wu P, Georgopoulos K. A dom- inant mutation in the Ikaros gene leads to rapid development of leukemia and lym- phoma. Cell. 1995;83(2):289-299.
47. Mantha S, Ward M, McCafferty J, et al. Activating Notch1 mutations are an early event in T-cell malignancy of Ikaros point mutant Plastic/+ mice. Leuk Res. 2007;31(3):321-327.
48. Scheijen B, Boer JM, Marke R, et al. Tumor suppressors BTG1 and IKZF1 cooperate dur- ing mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica. 2017;102(3):541-551.
49. Ng SY, Yoshida T, Zhang J, Georgopoulos K. Genome-wide lineage-specific transcription- al networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity. 2009;30(4):493-507.
50. Avitahl N, Winandy S, Friedrich C, et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity. 1999;10(3):333-343.
51. Winandy S, Wu L, Wang JH, Georgopoulos K. Pre-T cell receptor (TCR) and TCR-con- trolled checkpoints in T cell differentiation are set by Ikaros. J Exp Med. 1999;190(8): 1039-1048.
52. Reynaud D, Demarco IA, Reddy KL, et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol. 2008;9(8):927-936.
53. Ferreiros-Vidal I, Carroll T, Taylor B, et al. Genome-wide identification of Ikaros tar- gets elucidates its contribution to mouse B- cell lineage specification and pre-B-cell dif- ferentiation. Blood. 2013;121(10):1769-1782.
54. Hu Y, Zhang Z, Kashiwagi M, et al. Superenhancer reprogramming drives a B- cell-epithelial transition and high-risk leukemia. Genes Dev. 2016;30(17):1971- 1990.
55. Schjerven H, Ayongaba EF, Aghajanirefah A, et al. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR- ABL1+ pre-B ALL. J Exp Med. 2017;214(3): 793-814.
56. Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers inte- grin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15(3):294- 304.
57. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differen- tiation and cell cycle progression. Leukemia. 2007;21(6):1258-1266.
58. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758-764.
59. Paulsson K, Cazier JB, Macdougall F, et al. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. Proc Natl Acad Sci USA. 2008;105(18):6708-6713.
60. Tokunaga K, Yamaguchi S, Iwanaga E, et al. High frequency of IKZF1 genetic alterations in adult patients with B-cell acute lym- phoblastic leukemia. Eur J Haematol. 2013;91(3):201-208.
61. Boer JM, van der Veer A, Rizopoulos D, et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lym- phoblastic leukemia: an international col- laborative study. Leukemia. 2016;30(1):32- 38.
62. Dupuis A, Gaub MP, Legrain M, et al. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia. 2013;27(2):503-507.
63. Churchman ML, Low J, Qu C, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343-356.
64. Lilljebjorn H, Henningsson R, Hyrenius- Wittsten A, et al. Identification of ETV6- RUNX1-like and DUX4-rearranged sub- types in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.
65. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is char- acterized by the deletion of Ikaros. Nature. 2008;453(7191):110-114.
66. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classifi- cation study. Lancet Oncol. 2009;10(2): 125- 134.
67. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-166.
68. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph- like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005-1015.
69. Iacobucci I, Storlazzi CT, Cilloni D, et al. Identification and molecular characteriza- tion of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR- ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114(10):2159-2167.
70. Grossmann V, Kohlmann A, Zenger M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557-560.
71. Dorge P, Meissner B, Zimmermann M, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98(3): 428-432.
72. van der Veer A, Waanders E, Pieters R, et al. Independent prognostic value of BCR-ABL1- like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B- cell precursor ALL. Blood. 2013;122(15): 2622-2629.
73. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lin-
haematologica | 2018; 103(4)
573