Page 56 - 2020_08-Haematologica-web
P. 56

Clonal hematopoiesis and platelet traits
CML progression but not other hematologi- cal malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leukoc Res. 2009;33(8):1141-1143.
57. Dickinson RE, Milne P, Jardine L, et al. The evolution of cellular deficiency in GATA2 mutation. Blood. 2014;123(6):863-874.
58. Connelly JJ, Wang T, Cox JE, et al. GATA2 is associated with familial early-onset coro- nary artery disease. Plos Genet. 2006; 2(8):e139.
59. Anguita E, Candel FJ, Chaparro A, Roldan- Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol. 2017;7:54.
60. Polfus LM, Khajuria RK, Schick UM, et al. Whole-exome sequencing identifies loci associated with blood cell traits and reveals a role for alternative GFI1B splice variants in human hematopoiesis. Am J Hum Genet. 2016;99(2):481-488.
61. Saleque S, Cameron S, Orkin SH. The zinc- finger proto-oncogene GFI1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 2002; 16(3):301-306.
62. Moroy T, Vassen L, Wilkes B, Khandanpour C. From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood. 2015;126(24):2561-2569.
63. Monteferrario D, Bolar NA, Marneth AE, et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med. 2013;370(3):245-253.
64. Van Oorschot R, Hansen M, Koornneef JM, et al. Molecular mechanisms of bleeding dis- order associated GFI1B (Q287*) mutation and its affected pathways in megakary- ocytes and platelets. Haematologica. 2019;104(7):1460-1472.
65. Beauchemin H, Shooshtarizadeh P, Vadnais C, et al. GFI1b controls integrin signaling- dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica. 2017;102(3):484-497.
66. Mao X, Debenedittis P, Sun Y, et al. Vascular smooth muscle cell Smad4 gene is important for mouse vascular development. Arterioscler Thromb Vasc Biol. 2012;32(9): 2171-2177.
67. Wang Y, Jiang L, Mo X, et al. Megakaryocytic Smad4 regulates platelet function through Syk and ROCK2 expres- sion. Mol Pharmacol. 2017;92(3):285-296.
68. Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852-859.
69. Schutte M, Hruban RH, Hedrick L, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56(11):2527-2530.
70. Chen S, Wang Q, Yu H, et al. Mutant p53 drives clonal hematopoiesis through modu- lating epigenetic pathway. Nat Commun. 2019;10(1):5649.
71. Apostolidis PA, Woulfe DS, Chavez M, et al.
Role of tumor suppressor p53 in megakary- opoiesis and platelet function. Exp Hematol. 2012;40(2):131-142.
72. Shah V, Johnson DC, Sherborne AL, et al. Subclonal TP53 copy number is associated with prognosis in multiple myeloma. Blood. 2018;132(23):2465-2469.
73. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472-1478.
74. Zhu Q, Zhang M, Blaese RM, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995;86(10):3797-3804.
75. Devriendt K, Kim AS, Mathijs G, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutrope- nia. Nat Genet. 2001;27(3):313-317.
76. Keszei M, Kritikou JS, Sandfort D, et al. Wiskott-Aldrich syndrome gene mutations modulate cancer susceptibility in the p53 +/- murine model. Oncoimmunology. 2018;7 (9):e1468954.
77. Sereni L, Castiello MC, Villa A. Platelets in Wiskott-Aldrich syndrome: Victims or exe- cutioners? J Leukoc Biol. 2018;103(3):577- 590.
78. Shcherbina A, Cooley J, Lutskiy MI, et al. WASP plays a novel role in regulating platelet responses dependent on alphaIIbbeta3 integrin outside-in signalling. Br J Haematol. 2010;148(3):416-427.
79. Kim H, Falet H, Hoffmeister KM, Hartwig JH. Wiskott-Aldrich syndrome protein (WASp) controls the delivery of platelet transforming growth factor-beta1. J Biol Chem. 2013;288(48):34352-34363.
80. Gerrits AJ, Leven EA, Frelinger AL, et al. Effects of eltrombopag on platelet count and platelet activation in Wiskott-Aldrich syn- drome/X-linked thrombocytopenia. Blood. 2015;126(11):1367-1378.
81. Coppe A, Nogara L, Pizzuto MS, et al. Somatic mutations activating Wiskott- Aldrich syndrome protein concomitant with RAS pathway mutations in juvenile myelomonocytic leukemia patients. Hum Mutat. 2018;39(4):579-587.
82. Pang L, Xue HH, Szalai G, et al. Maturation stage-specific regulation of megakary- opoiesis by pointed-domain Ets proteins. Blood. 2006;108(7):2198-2206.
83. Li Y, Luo H, Liu T, et al. The ets transcription factor Fli-1 in development, cancer and dis- ease. Oncogene. 2015;34(16):2022-2031.
84. Favier R, Jondeau K, Boutard P, et al. Paris- Trousseau syndrome : clinical, hematologi- cal, molecular data of ten new cases. Thromb Haemost. 2003;90(5):893-897.
85. Saultier P, Vidal L, Canault M, et al. Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features.
Haematologica. 2017;102(6):1006-1016.
86. Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome transloca- tion in human tumours. Nature.
1992;359(6391):162-165.
87. Vo KK, Jarocha DJ, Lyde RB, et al. FLI1 level
during megakaryopoiesis affects throm- bopoiesis and platelet biology. Blood. 2017;129(26):3486-3494.
88. Vyas P, Ault K, Jackson CW, et al. Consequences of GATA1 deficiency in megakaryocytes and platelets. Blood. 1999;93(9):2867-2875.
89. Fujiwara Y, Browne CP, Cunniff K, et al. Arrested development of embryonic red cell precursors in mouse embryos lacking tran- scription factor GATA-1. Proc Natl Acad Sci USA. 1996;93(22):12355-12358.
90. Freson K, Devriendt K, Matthijs G, et al. Platelet characteristics in patients with X- linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98(1):85-92.
91. Zetterberg E, Verrucci M, Martelli F, et al. Abnormal P-selectin localization during megakaryocyte development determines thrombosis in the gata1low model of myelofibrosis. Platelets. 2014;25(7):539-547.
92. Lally J, Boasman K, Brown L, et al. GATA-1: A potential novel biomarker for the differen- tiation of essential thrombocythemia and myelofibrosis. J Thromb Haemost. 2019; 17(6):896-900.
93. Yamaguchi Y, Zon LI, Ackerman SJ, et al. Forced GATA-1 expression in the murine myeloid cell line M1: induction of c-Mpl expression and megakaryocytic/erythroid differentiation. Blood. 1998;91(2):450-457.
94. Kaasinen E, Kuismin O, Rajamaki K, et al. Impact of constitutional TET2 haploinsuf- ficiency on molecular and clinical pheno- type in humans. Nat Commun. 2019;10 (1):1252.
95. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis devel- opment in mice. Science. 2017;355 (6327):842-847.
96. Vannucchi AM, Barbui T. Thrombocytosis and thrombosis. Hematology Am Soc Hematol Educ Program. 2007:363-370.
97. Schafer AI. Thrombocytosis. N Engl J Med. 2004;350(12):1211-1219.
98. Hengeveld PJ, Hazenberg MD, Biezeveld MH, Raphael MF. [Risk of thrombosis in reactive thrombocytosis]. Ned Tijdschr Geneeskd. 2018;162:D2697.
99. Scharf RE. Molecular complexity of the megakaryocyte-platelet system in health and disease. Hamostaseologie. 2016;36(3): 159-160.
100. Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Semin Thromb Hemost. 2014;40(3):348-358.
haematologica | 2020; 105(8)
2031


































































































   54   55   56   57   58