Page 55 - 2020_08-Haematologica-web
P. 55

A. Veninga et al.
References
1. Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in car- diovascular disease. Nat Rev Cardiol. 2020;17(3):137-144.
2. Libby P, Pasterkamp G. Requiem for the 'vulnerable plaque'. Eur Heart J. 2015;36 (43):2984-2987.
3. Van der Meijden PE, Heemskerk JW. Platelet biology and functions: new concepts and future clinical perspectives Nat Rev Cardiol. 2019;16(3):166-179.
4. Daly ME. Transcription factor defects caus- ing platelet disorders. Blood Rev. 2017;31 (1):1-10.
5. Bianchi E, Norfo R, Pennucci V, et al. Genomic landscape of megakaryopoiesis and platelet function defects. Blood. 2016;127(10):1249-1259.
6. Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013; 201(6):785-796.
7. Steensma DP. Clinical consequences of clon- al hematopoiesis of indeterminate potential. Blood Adv. 2018;2(22):3404-3410.
8. Haybar H, Shahrabi S, Ghanavat M, Khodadi E. Clonal hematopoiesis: genes and underlying mechanisms in cardiovascular disease development. J Cell Physiol. 2019;234(6):8396-8401.
9. Sano S, Wang Y, Walsh K. Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. Circ J. 2018;83(1):2- 11.
10. Boswell-Casteel RC, Fukuda Y, Schuetz JD. ABCB6, an ABC transporter impacting drug response and disease. AAPS J. 2017;20(1):8.
11. Murphy AJ, Sarrazy V, Wang N, et al. Deficiency of ATP-binding cassette trans- porter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2014;34 (4):751-758.
12. Abraham A, Karathedath S, Varatharajan S, et al. ABCB6 RNA expression in leukemias: expression is low in acute promyelocytic leukemia and FLT3-ITD-positive acute myeloid leukemia. Ann Hematol. 2014;93 (3):509-512.
13. Nagase R, Inoue D, Pastore A, et al. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med. 2018;215(6):1729-1747.
14. Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloprolifer- ative neoplasms. Leukemia. 2009;23(11): 2183-2186.
15. Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328-341.
16. Acuna-Hidalgo R, Sengul H, Steehouwer M, et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis- associated mutations throughout adult life. Am J Hum Genet. 2017;101(1):50-64.
17. Guo JQ, Wang JY, Arlinghaus RB. Detection of BCR-ABL proteins in blood cells of benign phase chronic myelogenous leukemia patients. Cancer Res. 1991;51(11): 3048-3051.
18. Yamagata T, Mitani K, Kanda Y, et al. Elevated platelet count features the variant type of BCR/ABL junction in chronic myel- ogenous leukaemia. Br J Haematol. 1996;94 (2):370-372.
19. Valent P, Kern W, Hoermann G, et al. Clonal hematopoiesis with oncogenic potential (CHOP): separation from CHIP and roads to AML. Int J Mol Sci. 2019;20(3):789.
20. Kamata T, Kang J, Lee TH, et al. A critical function for B-Raf at multiple stages of myelopoiesis. Blood. 2005;106(3):833-840.
platelet formation and reactivity in a knock- in mouse model of essential thrombo- cythemia. Blood. 2013;122(23):3787-3797.
39. Mupo A, Seiler M, Sathiaseelan V, et al. Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia. 2017;31(3):720-
21. Garcia J, de Gunzburg J, Eychene A, et al. Thrombopoietin-mediated sustained activa- 727.
tion of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1- and Rap1-B-Raf-dependent pathways. Mol Cell Biol. 2001;21(8):2659-2670.
22. Sarkozy A, Carta C, Moretti S, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syn- dromes: molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30(4):695-702.
23. Xu Y, Wertheim G, Morrissette JJD, Bagg A. BRAF kinase domain mutations in de novo acute myeloid leukemia with monocytic differentiation. Leuk Lymphoma. 2017;58 (3):743-745.
24. Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16(7):793- 798.
25. Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128(15):1918-1927.
26. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015;15(3):152-165.
27. Yang L, Rodriguez B, Mayle A, et al. DNMT3A loss drives enhancer hypomethy- lation in FLT3-ITD-associated leukemias. Cancer Cell. 2016;29(6):922-934.
28. Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stabil- ity during disease evolution and clinical implications. Blood. 2012;119(2):559-568.
29. Leoni C, Montagner S, Rinaldi A, et al. Dnmt3a restrains mast cell inflammatory responses. Proc Natl Acad Sci U S A. 2017;114(8):E1490-E1499.
30. Tefferi A. Novel mutations and their func- tional and clinical relevance in myeloprolif- erative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128-1138.
40. Lin CC, Hou HA, Chou WC, et al. SF3B1 mutations in patients with myelodysplastic syndromes: the mutation is stable during disease evolution. Am J Hematol. 2014;89 (8):E109-115.
41. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2.
42. McKerrell T, Park N, Moreno T, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10(8):1239- 1245.
43. Maslah N, Cassinat B, Verger E, et al. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia. 2017;31(8):1661-1670.
44. Takizawa H, Eto K, Yoshikawa A, et al. Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp Hematol. 2008;36(7):897-906.
45. Wang W, Tang Y, Wang Y, et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res. 2016;119(6):e91- e103.
46. Hock H, Shimamura A. ETV6 in hematopoiesis and leukemia predisposition. Semin Hematol. 2017;54(2):98-104.
47. Kim CA, Phillips ML, Kim W, et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J. 2001;20(15):4173-4182.
48. Di Paola J, Porter CC. ETV6-related throm- bocytopenia and leukemia predisposition. Blood. 2019;134(8):663-667.
49. Poggi M, Canault M, Favier M, et al. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ pro- genitors. Haematologica. 2017;102(2):282-
31. DiNardo CD, Ravandi F, Agresta S, et al. 294.
Characteristics, clinical outcome, and prog- nostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732-736.
32. DiNardo CD, Jabbour E, Ravandi F, et al. IDH1 and IDH2 mutations in myelodys- plastic syndromes and role in disease pro- gression. Leukemia. 2016;30(4):980-984.
33. Yonal-Hindilerden I, Daglar-Aday A, Hindilerden F, et al. The clinical significance of IDH mutations in essential thrombo- cythemia and primary myelofibrosis. J Clin Med Res. 2016;8(1):29-39.
34. Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells. 2019;8(8):854.
35. Mead AJ, Rugless MJ, Jacobsen SE, Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012;366(10):967-969.
36. Fleischman AG, Tyner JW. Causal role for JAK2 V617F in thrombosis. Blood. 2013;122(23):3705-3706.
37. Barbui T, Finazzi G, Falanga A. Myeloproliferative neoplasms and throm- bosis. Blood. 2013;122(13):2176-2184.
38. Hobbs CM, Manning H, Bennett C, et al. JAK2V617F leads to intrinsic changes in
50. Pawlikowska P, Fouchet P, Vainchenker W, et al. Defective endomitosis during megakaryopoiesis leads to thrombocytope- nia in Fanca-/- mice. Blood. 2014;124 (24):3613-3623.
51. Tischkowitz MD, Morgan NV, Grimwade D, et al. Deletion and reduced expression of the Fanconi anemia FANCA gene in spo- radic acute myeloid leukemia. Leukemia. 2004;18(3):420-425.
52. Garcia MJ, Benitez J. The Fanconi anaemia/BRCA pathway and cancer suscep- tibility. Searching for new therapeutic tar- gets. Clin Transl Oncol. 2008;10(2):78-84.
53. Solyom S, Winqvist R, Nikkila J, et al. Screening for large genomic rearrangements in the FANCA gene reveals extensive dele- tion in a Finnish breast cancer family. Cancer Lett. 2011;302(2):113-118.
54. Crispino JD. GATA1 in normal and malig- nant hematopoiesis. Semin Cell Dev Biol. 2005;16(1):137-147.
55. Ganapathi KA, Townsley DM, Hsu AP, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic ane- mia. Blood. 2015;125(1):56-70.
56. Zhang SJ, Shi JY, Li JY. GATA-2 L359 V mutation is exclusively associated with
2030
haematologica | 2020; 105(8)


































































































   53   54   55   56   57