Page 80 - Haematologica - Vol. 105 n. 6 - June 2020
P. 80

  M.M. Majumder et al.
 References
1. Jassinskaja M, Johansson E, Kristiansen TA, et al. Comprehensive Proteomic Characterization of Ontogenic Changes in Hematopoietic Stem and Progenitor Cells. Cell Rep. 2017;21(11):3285-3297.
2. Bendall SC, Simonds EF, Qiu P, et al. Single- cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687-696.
3. Compagno M, Wang Q, Pighi C, et al. Phosphatidylinositol 3-kinase delta blockade increases genomic instability in B cells. Nature. 2017;542(7642):489-493.
4. Robak T, Robak P. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol. 2013;32(4):358-376.
5. Irish JM, Hovland R, Krutzik PO, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 2004;118(2):217-228.
6. Bodenmiller B, Zunder ER, Finck R, et al. Multiplexed mass cytometry profiling of cel- lular states perturbed by small-molecule reg- ulators. Nat Biotechnol. 2012;30(9):858-867.
7. Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer. 2006;6(2):146-155.
8. Krutzik PO, Crane JM, Clutter MR, Nolan GP. High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol. 2008;4(2):132-142.
9. Pemovska T, Kontro M, Yadav B, et al. Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia. Cancer Discov. 2013;3(12):1416-1429.
10. Pietarinen PO, Pemovska T, Kontro M, et al. Novel drug candidates for blast phase chron- ic myeloid leukemia from high-throughput drug sensitivity and resistance testing. Blood Cancer J. 2015;5:e309.
11. Pietarinen PO, Eide CA, Ayuda-Duran P, et al. Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget. 2017;8(14):22606-22615.
12. Kontro M, Kumar A, Majumder MM, et al. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia. 2017;31(2):301-309.
13. Eldfors S, Kuusanmaki H, Kontro M, et al. Idelalisib sensitivity and mechanisms of dis- ease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia. 2017;31(1):51-57.
14. Andersson EI, Putzer S, Yadav B, et al. Discovery of novel drug sensitivities in T- PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia. 2018;32(3):774-787.
15. Majumder MM, Silvennoinen R, Anttila P, et al. Identification of precision treatment strategies for relapsed/refractory multiple myeloma by functional drug sensitivity test- ing. Oncotarget. 2017;8(34):56338-56350.
16. Yadav B, Pemovska T, Szwajda A, et al. Quantitative scoring of differential drug sen- sitivity for individually optimized anticancer therapies. Sci Rep. 2014;4:5193.
17. Cang S, Iragavarapu C, Savooji J, Song Y, Liu
D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol. 2015;8:129.
in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma. J Clin Oncol. 2017;35(8):826-833.
34. Gallogly MM, Lazarus HM. Midostaurin: an emerging treatment for acute myeloid leukemia patients. J Blood Med. 2016;7:73-
18. Edelmann J, Gribben JG. Managing Patients
with TP53-Deficient Chronic Lymphocytic
Leukemia. J Oncol Pract. 2017;13(6):371-
377. 83.
19. Leonard JT, Rowley JS, Eide CA, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med. 2016;8(354):354ra114.
20. Rosenthal A. Small Molecule Inhibitors in Chronic Lymphocytic Lymphoma and B Cell Non-Hodgkin Lymphoma. Curr Hematol Malig Rep. 2017;12(3):207-216.
21. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmaco- dynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6-14.
22. ElDesoky ES. Pharmacokinetic-pharmaco- dynamic crisis in the elderly. Am J Ther. 2007;14(5):488-498.
23. Garcia JS, Percival ME. Midostaurin for the treatment of adult patients with newly diag- nosed acute myeloid leukemia that is FLT3 mutation-positive. Drugs Today (Barc). 2017;53(10):531-543.
24. Stone RM, Manley PW, Larson RA, Capdeville R. Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv. 2018;2(4):444-453.
25. Kawauchi K, Ogasawara T, Yasuyama M, Otsuka K, Yamada O. Regulation and importance of the PI3K/Akt/mTOR signal- ing pathway in hematologic malignancies. Anticancer Agents Med Chem. 2009;9(9):1024-1038.
26. Yamada O, Kawauchi K. The role of the JAK-STAT pathway and related signal cas- cades in telomerase activation during the development of hematologic malignancies. JAKSTAT. 2013;2(4):e25256.
27. Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012;120(17):3397- 3406.
28. Springuel L, Renauld JC, Knoops L. JAK kinase targeting in hematologic malignan- cies: a sinuous pathway from identification of genetic alterations towards clinical indica- tions. Haematologica. 2015;100(10):1240- 1253.
29. Spijkers-Hagelstein JA, Schneider P, Hulleman E, et al. Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL- rearranged infant acute lymphoblastic leukemia. Leukemia. 2012;26(6):1255-1265.
30. Tome ME, Baker AF, Powis G, Payne CM, Briehl MM. Catalase-overexpressing thymo- cytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res. 2001;61(6):2766-2773.
31. Boidol B, Kornauth C, van der Kouwe E, et al. First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocyt- ic leukemia. Blood. 2017;130(23):2499-2503.
32. Karjalainen R, Pemovska T, Popa M, et al. JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell- induced protection of AML. Blood. 2017;130(6):789-802.
33. Davids MS, Roberts AW, Seymour JF, et al. Phase I First-in-Human Study of Venetoclax
35. Ganeshaguru K, Wickremasinghe RG, Jones DT, et al. Actions of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologica. 2002;87(2):167-176.
36. Cheung MM, Chan JK, Wong KF. Natural killer cell neoplasms: a distinctive group of highly aggressive lymphomas/leukemias. Semin Hematol. 2003;40(3):221-232.
37. Reeb AN, Li W, Sewell W, et al. S100A8 is a novel therapeutic target for anaplastic thy- roid carcinoma. J Clin Endocrinol Metab. 2015;100(2): E232-242.
38. Wang Y, Guo A, Liang X, et al. HRD1 sensi- tizes breast cancer cells to Tamoxifen by promoting S100A8 degradation. Oncotarget. 2017;8(14):23564-23574.
39. Yang M, Zeng P, Kang R, et al. S100A8 con- tributes to drug resistance by promoting autophagy in leukemia cells. PLoS One. 2014;9(5): e97242.
40. Yang XY, Zhang MY, Zhou Q, et al. High expression of S100A8 gene is associated with drug resistance to etoposide and poor prognosis in acute myeloid leukemia through influencing the apoptosis pathway. Onco Targets Ther. 2016;9:4887-4899.
41. Tome ME, Jaramillo MC, Briehl MM. Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lym- phoma cells. Free Radic Biol Med. 2011;51(11):2048-2059.
42. Dubois CM, Neta R, Keller JR, Jacobsen SE, Oppenheim JJ, Ruscetti F. Hematopoietic growth factors and glucocorticoids syner- gize to mimic the effects of IL-1 on granulo- cyte differentiation and IL-1 receptor induc- tion on bone marrow cells in vivo. Exp Hematol. 1993;21(2):303-310.
43. Trottier MD, Newsted MM, King LE, Fraker PJ. Natural glucocorticoids induce expansion of all developmental stages of murine bone marrow granulocytes without inhibiting function. Proc Natl Acad Sci U S A. 2008;105(6):2028-2033.
44. Klein K, Haarman EG, de Haas V, Zwaan Ch M, Creutzig U, Kaspers GL. Glucocorticoid- Induced Proliferation in Untreated Pediatric Acute Myeloid Leukemia Blasts. Pediatr Blood Cancer. 2016;63(8):1457-1460.
45. Deligne C, Milcent B, Josseaume N, Teillaud JL, Siberil S. Impact of Depleting Therapeutic Monoclonal Antibodies on the Host Adaptive Immunity: A Bonus or a Malus? Front Immunol. 2017;8:950.
46. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164(6):811-821.
47. Longwe H, Phiri KS, Mbeye NM, Gondwe T, Jambo KC, Mandala WL. Proportions of CD4+, CD8+ and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV-uninfected but exposed children. BMC Immunol. 2015;16:50.
   1538
haematologica | 2020; 105(6)
   










































   78   79   80   81   82