Page 46 - 2020_01-Haematologica-web
P. 46

E. Mejia-Ramirez and M.C. Florian et al.
novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 1998;17(22):6527-6540.
95. Kong S, Zhang Y. Deciphering Hi-C: from 3D genome to function. Cell Biol Toxicol. 2019;35(1):15-32.
96. Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nat Rev Genet. 2018;19(12):789-800.
97. Galeev R, Larsson J. Cohesin in haematopoiesis and leukaemia. Curr Opin Hematol. 2018;25(4):259-265.
98. Viny AD, Ott CJ, Spitzer B, et al. Dose- dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med. 2015;212(11):1819-1832.
99. Choudry FA, Frontini M. Epigenetic Control of Haematopoietic Stem Cell Aging and Its Clinical Implications. Stem Cells Int. 2016;2016:5797521.
100.Benayoun BA, Pollina EA, Singh PP, et al. Remodeling of epigenome and transcrip- tome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 2019;29(4):697- 709.
101. Cheung P, Vallania F, Warsinske HC, et al. Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell. 2018;173(6): 1385-1397.
102.Burman B, Zhang ZZ, Pegoraro G, Lieb JD, Misteli T. Histone modifications predispose genome regions to breakage and transloca- tion. Genes Dev. 2015;29(13):1393-1402.
103.Kirschner K, Chandra T, Kiselev V, et al. Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Rep. 2017;19(8):1503-1511.
104. Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206-4218.
105. Norddahl GL, Pronk CJ, Wahlestedt M, et al. Accumulating mitochondrial DNA muta- tions drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell. 2011;8(5):499-510.
106.Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8): 3056-3063.
107.Rimmele P, Liang R, Bigarella CL, et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 2015;16(9):1164-1176.
108.Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoi- etic stem cell resistance to physiologic oxidative stress. Cell. 2007;128(2):325-339.
109.Warr MR, Binnewies M, Flach J, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323-327.
110. Brown K, Xie S, Qiu X, et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3(2):319-327.
111. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417-423.
112.Chen F, Liu Y, Wong NK, Xiao J, So KF. Oxidative Stress in Stem Cell Aging. Cell Transplant. 2017;26(9):1483-1495.
113.Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870-880.
114. Mohrin M, Shin J, Liu Y, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoi-
etic stem cell aging. Science. 2015;347(6228):
1374-1377.
115. Rubinsztein David C, Mariño G, Kroemer
G. Autophagy and Aging. Cell. 2011;146(5):
682-695.
116. Schvartzman JM, Thompson CB, Finley
LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol. 2018;217(7):2247-2259.
117.Auberger P, Puissant A. Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood. 2017;129(5):547-552.
118.RotheK,PorterV,JiangX.CurrentOutlook on Autophagy in Human Leukemia: Foe in Cancer Stem Cells and Drug Resistance, Friend in New Therapeutic Interventions. Int J Mol Sci. 2019;20(3).
119. Willems L, Chapuis N, Puissant A, et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 2012;26(6): 1195-1202.
120.Macara IG, Mili S. Polarity and differential inheritance--universal attributes of life? Cell. 2008;135(5):801-812.
121. Budovsky A, Fraifeld VE, Aronov S. Linking cell polarity, aging and rejuvenation. Biogerontology. 2011;12(2):167-175.
122.Liu B, Larsson L, Caballero A, et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell. 2010;140(2):257-267.
123.Bufalino MR, DeVeale B, van der Kooy D. The asymmetric segregation of damaged proteins is stem cell-type dependent. J Cell Biol. 2013;201(4):523-530.
124.Yamashita YM, Yuan H, Cheng J, Hunt AJ. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol. 2010;2(1):a001313.
125.Mohr J, Dash BP, Schnoeder TM, et al. The cell fate determinant Scribble is required for maintenance of hematopoietic stem cell function. Leukemia. 2018;32(5):1211-1221.
126.Beckmann J, Scheitza S, Wernet P, Fischer JC, Giebel B. Asymmetric cell division with- in the human hematopoietic stem and pro- genitor cell compartment: identification of asymmetrically segregating proteins. Blood. 2007;109(12):5494-5501.
127. Zou C, Mallampalli RK. Regulation of his- tone modifying enzymes by the ubiquitin– proteasome system. Biochim Biophys Acta. 2014;1843(4):694-702.
128.Tomaru U, Takahashi S, Ishizu A, et al. Decreased proteasomal activity causes age- related phenotypes and promotes the devel- opment of metabolic abnormalities. Am J Pathol. 2012;180(3):963-972.
129.van Galen P, Kreso A, Mbong N, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268-272.
130.Wang L, Zeng X, Ryoo HD, Jasper H. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet. 2014;10(8) :e1004568.
131. Henis-Korenblit S, Zhang P, Hansen M, et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A. 2010;107(21):9730-9735.
132.Deng Y, Wang ZV, Tao C, et al. The Xbp1s/GalE axis links ER stress to postpran- dial hepatic metabolism. J Clin Invest. 2013;123(1):455-468.
133.Shao M, Shan B, Liu Y, et al. Hepatic IRE1α regulates fasting-induced metabol- ic adaptive programs through the XBP1s- PPARα axis signalling. Nat Commun.
2014;5:3528.
134.Chaube R. Can UPR integrate fasting and
stem cell regeneration? Front Chem.
2015;3:5.
135.Cheng CW, Adams GB, Perin L, et al.
Prolonged fasting reduces IGF-1/PKA to pro- mote hematopoietic-stem-cell-based regen- eration and reverse immunosuppression. Cell Stem Cell. 2014;14(6):810-823.
136. Wei Q, Frenette PS. Niches for Hematopoietic Stem Cells and Their Progeny. Immunity. 2018;48(4):632-648.
137. Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell. 2010;6(3):265- 278.
138. Seib DR, Corsini NS, Ellwanger K, et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12(2):204-214.
139.Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807-810.
140. Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839):803-806.
141. Malhotra S, Kincade PW. Wnt-related mole- cules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell. 2009;4(1):27- 36.
142.Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein sig- nalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol. 2014;171(5):1195-1209.
143.Schreck C, Istvanffy R, Ziegenhain C, et al. Niche WNT5A regulates the actin cytoskele- ton during regeneration of hematopoietic stem cells. J Exp Med. 2017;214(1):165-181.
144. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760-764.
145. Jiang C, Wen Y, Kuroda K, Hannon K, Rudnicki MA, Kuang S. Notch signaling deficiency underlies age-dependent deple- tion of satellite cells in muscular dystrophy. Dis Model Mech. 2014;7(8):997-1004.
146. Liu L, Charville GW, Cheung TH, et al. Impaired Notch Signaling Leads to a Decrease in p53 Activity and Mitotic Catastrophe in Aged Muscle Stem Cells. Cell Stem Cell. 2018;23(4):544-556.
147.Engler A, Rolando C, Giachino C, et al. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular- Subventricular Zone. Cell Rep. 2018;22(4): 992-1002.
148. Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46(2):281-285.
149. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoi- etic stem cell niche. Nature. 2003;425(6960): 841-846.
150.Karanu FN, Murdoch B, Gallacher L, et al. The Notch Ligand Jagged-1 Represents a Novel Growth Factor of Human Hematopoietic Stem Cells. J Exp Med. 2000;192(9):1365-1372.
151.
Rathinam C, Matesic LE, Flavell RA. The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol. 2011;12(5):399- 407.
152.Maillard I, Koch U, Dumortier A, et al. Canonical notch signaling is dispensable for
36
haematologica | 2020; 105(1)


































































































   44   45   46   47   48