Page 141 - 2019_12-Haematologica-web
P. 141

Single-agent CHK1 inhibition in CLL
29. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bio- science research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.
30. Shultz LD, Lyons BL, Burzenski LM, et al. Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2Rγnull Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. J Immunol. 2005;174(10):6477-6489.
31. Labroli MA, Dwyer MP, Poker C, Keertikar KM, Rossman R, Guzi TJ. A convergent preparation of the CHK1 inhibitor MK-8776 (SCH 900776). Tetrahedron Lett. 2016;57 (24):2601-2603.
32. Davies KD, Humphries MJ, Sullivan FX, et al. Single-agent inhibition of Chk1 is antiproliferative in human cancer cell lines in vitro and inhibits tumor xenograft growth in vivo. Oncol Res. 2011;19(7):349-363.
33. Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004;3(4):513-519.
34. Ma CX, Janetka JW, Piwnica-Worms H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011;17(2):88-96.
35. Sanjiv K, Hagenkort A, Calderón-Montaño JM, et al. Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Rep. 2016;14(2):298-309.
36. Beyaert M, Starczewska E, Pérez ACG, et al. Reevaluation of ATR signaling in primary resting chronic lymphocytic leukemia cells:
evidence for pro-survival or pro-apoptotic function. Oncotarget. 2017;8(34):56906- 56920.
37. Natoni A, Murillo LS, Kliszczak AE, et al. Mechanisms of action of a dual Cdc7/Cdk9 kinase inhibitor against quiescent and prolif- erating CLL cells. Mol Cancer Ther. 2011;10(9):1624-1634.
38. Jones GG, Reaper PM, Pettitt AR, Sherrington PD. The ATR-p53 pathway is suppressed in noncycling normal and malig- nant lymphocytes. Oncogene. 2004;23(10): 1911-1921.
39. Tse AN, Rendahl KG, Sheikh T, et al. CHIR- 124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoiso- merase I poisons in vitro and in vivo. Clin Cancer Res. 2007;13(2 Pt 1):591-602.
40. Giordano Attianese GMP, Marin V, Hoyos V, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lym- phocytic leukemia by anti-CD23 chimeric antigen receptor. Blood. 2011;117(18):4736- 4745.
41. Verner J, Trbusek M, Chovancova J, et al. NOD/SCID IL2Rg-null mouse xenograft model of human p53-mutated chronic lym- phocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines. Leuk Lymphoma. 2015;56(11):3198-3206.
42. Messmer BT, Messmer D, Allen SL, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 2005;115(3): 755-764.
43. Herishanu Y, Pérez-Galán P, Liu D, et al. The lymph node microenvironment promotes B- cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lympho- cytic leukemia. Blood. 2011;117(2):563-574.
44. Herndon TM, Chen S-S, Saba NS, et al. Direct in vivo evidence for increased prolif- eration of CLL cells in lymph nodes com- pared to bone marrow and peripheral blood. Leukemia. 2017;31(6):1340-1347.
45. Obermann EC, Went P, Tzankov A, et al. Cell cycle phase distribution analysis in chronic lymphocytic leukaemia: a signifi- cant number of cells reside in early G1- phase. J Clin Pathol. 2007;60(7):794-797.
46. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
47. Grgurevic S, Berquet L, Quillet-Mary A, et al. 3R gene expression in chronic lympho- cytic leukemia reveals insight into disease evolution. Blood Cancer J. 2016;6(6):e429.
48. Kaneko YS, Watanabe N, Morisaki H, et al. Cell-cycle-dependent and ATM-indepen- dent expression of human Chk1 kinase. Oncogene. 1999;18(25):3673-3681.
49. Dietrich S, Oleś M, Lu J, et al. Drug-pertur- bation-based stratification of blood cancer. J Clin Invest. 2018;128(1):427-445.
50. Petlickovski A, Laurenti L, Li X, et al. Sustained signaling through the B-cell recep- tor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105(12):4820-4827.
haematologica | 2019; 104(12)
2455


































































































   139   140   141   142   143