Page 147 - 2019_01-Haematologica-web
P. 147

Fusion genes involving MEF2D in B-ALL
strategy for cancer control H22-011), the Grant of the National Center for Child Health and Development (26-20), and the Advanced Research for Medical Products Mining Programme of the National Institute of Biomedical Innovation (NIBIO, 10-41, -42, -43, -44, -45), and Biobank Japan project funded by the Ministry of Education, Culture, Sports, Science and Technology
(MEXT) and the Japan Agency for Medical Research and Development (AMED), and the Practical Research for Innovative Cancer Control from AMED.
These funding sources played no role in the collection, analy- sis, or interpretation of the results, or in the writing of the man- uscript and decision to submit it.
References
1. Hunger SP, Mullighan CG. Acute lym- phoblastic leukemia in children. N Engl J Med. 2015;373(16):1541-1552.
2. Schwab C, Harrison CJ. Advances in B-cell precursor acute lymphoblastic leukemia genonics. HemaSphere. 2018;2(4):e53
3. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-166.
4. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph- like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005-1015.
5. GochoY,KiyokawaN,IchikawaH,etal.A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015;29(12):2445- 2448.
6. LiuYF,WangBY,ZhangWN,etal.Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 2016;8:173-183.
7. Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lym- phoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48(5):569- 574.
8. Lilljebjörn H, Henningsson R, Hyrenius- Wittsten A, et al. Identification of ETV6- RUNX1-like and DUX4-rearranged sub- types in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.
9. Zhang J, McCastlain K, Yoshihara H, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016; 48(12):1481-1489.
10. Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016;7:13331.
11. HirabayashiS,OhkiK,NakabayashiK,etal. ZNF384-related fusion genes define a sub- group of childhood B-cell precursor acute lymphoblastic leukemia with a characteris- tic immunotype. Haematologica. 2017;102 (1):118-129.
12. PrimaV,GoreL,CairesA,etal.Cloningand functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia. 2005;19(5):806-813.
13. Lilljebjörn H, Ågerstam H, Orsmark-Pietras C, et al. RNA-seq identifies clinically rele- vant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib. Leukemia. 2014;28(4):977-979.
14. Suzuki K, Okuno Y, Kawashima N, et al. MEF2D-BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblas- tic leukemia in adolescents. J Clin Oncol. 2016;34(28):3451-3459.
15. Breitbart RE, Liang CS, Smoot LB, Laheru
DA, Mahdavi V, Nadal-Ginard B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development. 1993; 118(4):1095-1106.
16. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg M E. (1999) Neuronal activity- dependent cell survival mediated by tran- scription factor MEF2. Science. 1999;286 (5440):785-790.
17. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999; 18(18): 5099-5107.
18. Honoré B, Rasmussen HH, Vorum H, et al. Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to dif- ferent chromosomes. J Biol Chem. 1995; 270(48):28780-28789.
19. Takahashi H, Kajiwara R, Kato M, et al. Treatment outcome of children with acute lymphoblastic leukemia: the Tokyo Children's Cancer Study Group (TCCSG) Study L04-16. Int J Hematol. 2018;108:98- 108.
20. Masuzawa A, Kiyotani C, Osumi T, et al. Poor responses to tyrosine kinase inhibitors in a child with precursor B-cell acute lym- phoblastic leukemia with SNX2-ABL1 chimeric transcript. Eur J Haematol. 2014; 92(3):263-267.
21. Kobayashi K, Mitsui K, Ichikawa H, et al. ATF7IP as a novel PDGFRB fusion partner in acute lymphoblastic leukaemia in children. Br J Haematol. 2014;165(6):836-841.
22. McPherson A, Hormozdiari F, Zayed A, et al. deFuse: an algorithm for gene fusion dis- covery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7(5):e1001138.
23. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269-271.
24. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lym- phoblastic leukemia. Nat Genet. 2010; 42(4):338-342.
25. Wang Q, Qiu H, Jiang H, et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET- NUP214 in T-cell acute lymphoblastic leukemia. Haematologica. 2011;96(12): 1808-1814.
26. Spinella JF, Cassart P, Richer C, et al. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget. 2016;7(40):65485-65503.
27. Royet J, Bouwmeester T, Cohen SM. Notchless encodes a novel WD40-repeat- containing protein that modulates Notch signaling activity. EMBO J. 1998; 17(24):7351-7360.
28. Carroll AJ, Crist WM, Parmley RT, Roper M, Cooper MD, Finley WH. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood. 1984;63(3):721-724.
29. Borowitz MJ, Hunger SP, Carroll AJ, et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lym- phoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood. 1993;82(4):1086-1091.
30. Lower KM, Turner G, Kerr BA, et al. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nat Genet. 2002;32(4):661-665.
31. Chen D, Zheng J, Gerasimcik N, et al. The expression pattern of the Pre-B cell receptor components correlates with cellular stage and clinical outcome in acute lymphoblastic leukemia. PLoS One. 2016; 11(9):e0162638.
32. Herglotz J, Unrau L, Hauschildt F, et al. Essential control of early B-cell development by Mef2 transcription factors. Blood. 2016;127(5):572-581.
33. Landry DB, Engel JD, Sen R. Functional GATA 3 binding sites within murine CD8 alpha upstream regulatory sequences. J Exp Med. 1993;178(3):941-949.
34. Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996;384(6608):474-478.
35. Gao J, Chen YH, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol. 2015;4:28.
36. Banerjee A, Northrup D, Boukarabila H, Jacobsen SE, Allman D. Transcriptional repression of Gata3 is essential for early B cell commitment. Immunity. 2013; 38(5):930-42.
37. Somasundaram R, Prasad MA, Ungerbäck J, Sigvardsson M. Transcription factor net- works in B-cell differentiation link develop- ment to acute lymphoid leukemia. Blood. 2015;126(2):144-152.
38. Chen D, Zhang G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol. 2001;29(8):971-980.
39. Ku CJ, Hosoya T, Maillard I, Engel JD. GATA 3 regulates hematopoietic stem cell maintenance and cell cycle entry. Blood. 2012;119(10):2242-2251.
40. Frelin C, Herrington R, Janmohamed S, et al. GATA 3 regulates the self renewal of long term hematopoietic stem cells. Nat Immunol. 2013;14(10):1037-1044.
41. Heavey B, Charalambous C, Cobaleda C, Busslinger M. Myeloid lineage switch of Pax5 mutant but not wild-type B cell pro- genitors by C/EBPalpha and GATA factors. EMBO J. 2003;22(15):3887-3897.
42. Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45(12):1494-1498.
43. Perez-Andreu V, Roberts KG, Xu H, et al. A genome-wide association study of suscepti- bility to acute lymphoblastic leukemia in adolescents and young adults. Blood. 2015; 125(4):680-686.
haematologica | 2019; 104(1)
137


































































































   145   146   147   148   149