Page 154 - 2018_12-Haematologica-web
P. 154

L.V. Abruzzo et al.
35. Mognol GP, Carneiro FR, Robbs BK, Faget
DV, Viola JP. Cell cycle and apoptosis regu- lation by NFAT transcription factors: new roles for an old player. Cell Death Dis. 2016;7:e2199.
36. Zhong Y, Byrd JC, Dubovsky JA. The B-cell receptor pathway: a critical component of healthy and malignant immune biology. Semin Hematol. 2014;51(3):206-218.
37. Pham LV, Tamayo AT, Yoshimura LC, Lin- Lee YC, Ford RJ. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood. 2005;106(12):3940-3947.
38. Le Roy C, Deglesne PA, Chevallier N, et al. The degree of BCR and NFAT activation pre- dicts clinical outcomes in chronic lympho- cytic leukemia. Blood. 2012;120(2):356-365.
39. Marklin M, Heitmann JS, Fuchs AR, et al. NFAT2 is a critical regulator of the anergic phenotype in chronic lymphocytic leukaemia. Nat Commun. 2017;8(1):755.
40. Schuh K, Avots A, Tony HP, Serfling E,
Kneitz C. Nuclear NF-ATp is a hallmark of unstimulated B cells from B-CLL patients. Leuk Lymphoma. 1996;23(5-6):583-592.
41. Wolf C, Garding A, Filarsky K, et al. NFATC1 activation by DNA hypomethyla- tion in chronic lymphocytic leukemia cor- relates with clinical staging and can be inhibited by ibrutinib. Int J Cancer. 2018;142(2):322-333.
42. Oakes CC, Seifert M, Assenov Y, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48(3):253-264.
43. Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer. 2009;9(11):810-820.
44. Qin JJ, Nag S, Wang W, et al. NFAT as can- cer target: mission possible? Biochim Biophys Acta. 2014;1846(2):297-311.
45. Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-adenosine: a next-genera- tion target in immuno-oncology. Immunotherapy. 2016;8(2):145-163.
46. Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Hasko G. Anti-CD73 in cancer immunotherapy: awakening new opportu- nities. Trends Cancer. 2016;2(2):95-109.
47. Serra S, Horenstein AL, Vaisitti T, et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood. 2011;118(23):6141-6152.
48. McClanahan F, Hanna B, Miller S, et al. PD- L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203-211.
49. Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013; 121(9):1612-1621.
50. Riches JC, Gribben JG. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am. 2013; 27(2):207-235.
2078
haematologica | 2018; 103(12)


































































































   152   153   154   155   156