Page 153 - 2018_12-Haematologica-web
P. 153

Trisomy 12 CLL
which was associated with aggressive disease, and CD38 and ZAP70 positivity.47 Unfortunately, this study did not assess the association between NT5E expression and cyto- genetic status. Our findings suggest that targeting this pathway may be an effective therapy in patients with +12 CLL.
In summary, we have demonstrated, by whole tran- scriptome profiling, that CLL cases with +12 as the only cytogenetic abnormality demonstrate a unique set of dif- ferentially expressed genes and pathways compared to cases with del(13q) or del(11q). Our data support the hypothesis that these differences contribute, in part, to the
unique pathophysiology of +12 CLL. Finally, we have identified genes and pathways, such as the checkpoint inhibitor molecule, NT5E (CD73), and the NFAT signaling pathway that may represent new therapeutic targets.
Acknowledgments
The authors thank the patients who donated their blood. The authors also thank Dr. David Lucas for helpful discussions and comments.
Funding
This work was supported in part by grants from the CLL Global Research Foundation and NIH/NCI 1 R01 CA182905-01.
References
1. Zenz T, Dohner H, Stilgenbauer S. Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract Res Clin Haematol. 2007; 20(3):439-453.
2. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944-13949.
3. Van Roosbroeck K, Calin GA. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted ther- apies? Semin Oncol. 2016;43(2):209-214.
4. Matutes E, Oscier D, Garcia-Marco J, et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 1996; 92(2):382-388.
5. Strati P, Abruzzo LV, Wierda WG, O'Brien S, Ferrajoli A, Keating MJ. Second cancers and Richter transformation are the leading causes of death in patients with trisomy 12 chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2015; 15(7):420-427.
6. Haslinger C, Schweifer N, Stilgenbauer S, et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol. 2004;22(19):3937-3949.
7. Mittal AK, Hegde GV, Aoun P, et al. Molecular basis of aggressive disease in chronic lymphocytic leukemia patients with 11q deletion and trisomy 12 chromo- somal abnormalities. Int J Mol Med. 2007; 20(4):461-469.
8. Porpaczy E, Bilban M, Heinze G, et al. Gene expression signature of chronic lym- phocytic leukaemia with Trisomy 12. Eur J Clin Invest. 2009;39(7):568-575.
9. Visone R, Rassenti LZ, Veronese A, et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood. 2009;114(18):3872-3879.
10. Duzkale H, Schweighofer CD, Coombes KR, et al. LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients. Blood. 2011;117(15):4076-4084.
11. Fais F, Ghiotto F, Hashimoto S, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102(8):1515-1525.
12. Fabbri G, Rasi S, Rossi D, et al. Analysis of
the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational acti- vation. J Exp Med. 2011;208(7):1389-1401.
13. Abruzzo LV, Lee KY, Fuller A, et al. Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real- time RT-PCR data. Biotechniques. 2005;38(5):785-792.
14. Schemper M, Smith TL. A note on quanti- fying follow-up in studies of failure time. Control Clin Trials. 1996;17(4):343-346.
15. Moreau EJ, Matutes E, A'Hern RP, et al. Improvement of the chronic lymphocytic leukemia scoring system with the mono- clonal antibody SN8 (CD79b). Am J Clin Pathol. 1997;108(4):378-382.
16. Manyam G, Ivan C, Calin GA, Coombes KR. targetHub: a programmable interface for miRNA-gene interactions. Bioinformatics. 2013;29(20):2657-2658.
17. Stankovic T, Skowronska A. The role of ATM mutations and 11q deletions in dis- ease progression in chronic lymphocytic leukemia. Leuk Lymphoma. 2014; 55(6):1227-1239.
18. Del Giudice I, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lym- phocytic leukemia (CLL) confer an unfa- vorable prognosis, induce a distinctive tran- scriptional profiling and refine the interme- diate prognosis of +12 CLL. Haematologica. 2012;97(3):437-441.
19. Tam CS, Otero-Palacios J, Abruzzo LV, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic sub- type: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141(1):36-40.
20. Skarbnik AP, Faderl S. The role of com- bined fludarabine, cyclophosphamide and rituximab chemoimmunotherapy in chron- ic lymphocytic leukemia: current evidence and controversies. Ther Adv Hematol. 2017;8(3):99-105.
21. Maura F, Mosca L, Fabris S, et al. Insulin growth factor 1 receptor expression is asso- ciated with NOTCH1 mutation, trisomy 12 and aggressive clinical course in chronic lymphocytic leukaemia. PLoS One. 2015;10(3):e0118801.
22. Pozzo F, Bittolo T, Vendramini E, et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC- related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia. 2017;31(11):2407-2415.
23. Riches JC, O'Donovan CJ, Kingdon SJ, et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of inte-
grin signaling that is modulated by NOTCH1 mutations. Blood. 2014; 123(26): 4101-4110.
24. Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol. 2011;3(9):a005074.
25. Herishanu Y, Perez-Galan P, Liu D, et al. The lymph node microenvironment pro- motes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563-574.
26. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2011;2011:96-103.
27. Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinos- itol 3-kinase p110delta, for relapsed/refrac- tory chronic lymphocytic leukemia. Blood. 2014;123(22):3390-3397.
28. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42.
29. Woyach JA, Smucker K, Smith LL, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecu- lar characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810-1817.
30. Thompson PA, Ferrajoli A, O'Brien S, Wierda WG, Keating MJ, Burger JA. Trisomy 12 is associated with an abbreviat- ed redistribution lymphocytosis during treatment with the BTK inhibitor ibrutinib in patients with chronic lymphocytic leukaemia. Br J Haematol. 2015;170(1):125- 128.
31. Herman SE, Mustafa RZ, Jones J, Wong DH, Farooqui M, Wiestner A. Treatment with Ibrutinib Inhibits BTK- and VLA-4- Dependent Adhesion of Chronic Lymphocytic Leukemia Cells In Vivo. Clin Cancer Res. 2015;21(20):4642-4651.
32. Zucchetto A, Caldana C, Benedetti D, et al. CD49d is overexpressed by trisomy 12 chronic lymphocytic leukemia cells: evi- dence for a methylation-dependent regula- tion mechanism. Blood. 2013;122(19): 3317-3321.
33. Saez de Guinoa J, Barrio L, Carrasco YR. Vinculin arrests motile B cells by stabilizing integrin clustering at the immune synapse. J Immunol. 2013;191(5):2742-2751.
34. Medyouf H, Ghysdael J. The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle. 2008;7(3):297- 303.
haematologica | 2018; 103(12)
2077


































































































   151   152   153   154   155