Page 232 - Haematologica Vol. 107 - September 2022
P. 232

LETTER TO THE EDITOR
References
1. Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone- marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol. 2018;15(4):219-233.
2. Kuntz A, Richins CA. Innervation of the bone marrow. J Comp Neurol. 1945;83:213-222.
3. Knight JM, Rizzo JD, Hari P, et al. Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Adv. 2020;4(3):467-476.
4. Hwa YL, Shi Q, Kumar SK, et al. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. Am J Hematol. 2017;92(1):50-55.
5. Brimnes MK, Vangsted AJ, Knudsen LM, et al. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR(-)/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72(6):540-547.
6. Das R, Strowig T, Verma R, et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat Med. 2016;22(11):1351-1357.
7. Walczak J, Bunn C, Saini P, Liu YM, Baldea AJ, Muthumalaiappan K. Transient improvement in erythropoiesis is achieved via the chaperone AHSP with early administration of propranolol in burn patients. J Burn Care Res. 2020;42(2):311-322.
8. Hasan S, Johnson NB, Mosier MJ, et al. Myelo-erythroid commitment after burn injury is under b-adrenergic control via MafB regulation. Am J Physiol Cell Physiol. 2017;312(3):C286-C301.
9. Bajpai R, Sharma A, Achreja A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11(1):1228.
10. Liu L, Yu Z, Cheng H, et al. Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci Rep. 2020;10(1):20508.
11. Cheng Y, Sun F, D'Souza A, et al. Autonomic nervous system control of multiple myeloma. Blood Rev. 2021;46:100741.
12. Vicente-Dueñas C, Romero-Camarero I, González-Herrero I, et al. A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J. 2012;31(18):3704-3717.
13. Qiang YW, Ye S, Chen Y, et al. MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 2016;128(25):2919-2930.
14. Barwick BG, Neri P, Bahlis NJ, et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat Commun. 2019;10(1):1911.
15. Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)- Propranolol as an anti-cancer agent. Ecancermedicalscience. 2016;10:680.
16. Qiang Y-W, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18(1):724.
17. Ni Chonghaile T, Sarosiek KA, Vo TT, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334(6059):1129-1133.
18. Montero J, Sarosiek KA, DeAngelo JD, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160(5):977-989.
 Haematologica | 107 September 2022
2231













































































   230   231   232   233   234