Page 36 - Haematologica May 2022
P. 36
D. Papaioannou et al.
younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354-365.
5. Mrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18(2):115-136.
6. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
7.Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079-1089.
8. Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epige- nomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368 (22):2059-2074.
9. Metzeler KH, Herold T, Rothenberg-Thurley M, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686-698.
10. Eisfeld A-K, Kohlschmidt J, Mrózek K, et al. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia. 2018;32(6):1338- 1348.
11. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognosti- cally prioritized molecular classification? Blood. 2007;109(2):431-448.
12. Valk PJM, Verhaak RGW, Beijen MA, et al. Prognostically useful gene-expression pro- files in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617-1628.
13. Metzeler KH, Hummel M, Bloomfield CD, et al. An 86-probe-set gene-expression sig- nature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008;112(10):4193-4201.
14. Li Z, Herold T, He C, et al. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013;31(9):1172-1181.
15.Marcucci G, Yan P, Maharry K, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven- gene score. J Clin Oncol. 2014;32(6):548- 556.
16. Herold T, Jurinovic V, Batcha AMN, et al. A 29-gene and cytogenetic score for the pre- diction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018;103(3):456-465.
17. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264-278.
18. Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25(3):379-392.
19. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921.
20. Kellis M, Wold B, Snyder MP, et al. Defining functional DNA elements in the human
genome. Proc Natl Acad Sci U S A.
2014;111(17):6131-6138.
21. Taylor J. Clues to function in gene deserts.
Trends Biotechnol. 2005;23(6):269-271.
22. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem.
2012;81:145-166.
23. Guttman M, Rinn JL. Modular regulatory
principles of large non-coding RNAs.
Nature. 2012;482(7385):339-346.
24. Wang KC, Chang HY. Molecular mecha- nisms of long noncoding RNAs. Mol Cell.
2011;43(6):904-914.
25. Gupta RA, Shah N, Wang KC, et al. Long
non-coding RNA HOTAIR reprograms chro- matin state to promote cancer metastasis. Nature. 2010;464(7291):1071-1076.
26. Leucci E, Vendramin R, Spinazzi M, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531(7595): 518-522.
27. Trimarchi T, Bilal E, Ntziachristos P, et al. Genome-wide mapping and characteriza- tion of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158(3): 593-606.
28. Papaioannou D, Petri A, Dovey OM, et al. The long non-coding RNA HOXB-AS3 reg- ulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun. 2019;10(1):5351.
29. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031-8041.
30. Papaioannou D, Nicolet D, Volinia S, et al. Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica. 2017;102(8): 1391-1400.
31. Garzon R, Volinia S, Papaioannou D, et al. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2014;111(52):18679- 18684.
32. Beck D, Thoms JAI, Palu C, et al. A four- gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia. 2018;32(2): 263-272.
33.Mer AS, Lindberg J, Nilsson C, et al. Expression levels of long non-coding RNAs are prognostic for AML outcome. J Hematol Oncol. 2018;11(1):52.
34. Yan X, Hu Z, Feng Y, et al. Comprehensive genomic characterization of long non-cod- ing RNAs across human cancers. Cancer Cell. 2015;28(4):529-540.
35. Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199-208.
36. Schwarzer A, Emmrich S, Schmidt F, et al. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017;8(1):218.
37. Klco JM, Miller CA, Griffith M, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314 (8):811-822.
38.Büchner T, Berdel WE, Schoch C, et al.
39.
40.
41.
42.
43.
44.
Double induction containing either two courses or one course of high-dose cytara- bine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged mainte- nance for acute myeloid leukemia. J Clin Oncol. 2006;24(16):2480-2489.
Braes J, Amler S, Kreuzer K-A, et al. Sequential high-dose cytarabine and mitox- antrone (S-HAM) versus standard double induction in acute myeloid leukemia―a phase 3 study. Leukemia. 2018;32(12):2558- 2571.
Mrózek K, Carroll AJ, Maharry K, et al. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol. 2008;33(2):239-244.
Eisfeld A-K, Mrózek K, Kohlschmidt J, et al. The mutational oncoprint of recurrent cyto- genetic abnormalities in adult patients with de novo acute myeloid leukemia. Leukemia. 2017;31(10):2211-2218.
Marcucci G, Maharry K, Radmacher MD, et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high- risk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol. 2008;26(31):5078-5087.
Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res. 2001;61(19):7233-7239. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet. 2012;13(9):667-672.
45. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression methods in bio- statistics: linear, logistic, survival and repeat- ed measures models. New York, NY: Springer; 2005.
46. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA- Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expres- sion profiling. BMC Genomics. 2014;15 (1):419.
47. Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-cod- ing sequence variants in cancer. Nat Rev Genet. 2016;17(2):93-108.
48. Saeinasab M, Bahrami AR, González J, et al. SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by inter- acting with AIF. J Exp Clin Cancer Res. 2019;38(1):172.
49. Ye J, Tan L, Fu Y, et al. LncRNA SNHG15 promotes hepatocellular carcinoma progres- sion by sponging miR-141-3p. J Cell Biochem. 2019;120(12):19775-19783.
50. Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018;495(2):1594-1600.
1044
haematologica | 2022; 107(5)