Page 58 - 2022_03-Haematologica-web
P. 58
M. Zapatka et al.
References
1. McGranahan N, Rosenthal R, Hiley CT, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171(6):1259-1271.
2. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260): 23-28.
3. Landau DA, Sun C, Rosebrock D, et al. The evolutionary landscape of chronic lympho- cytic leukemia treated with ibrutinib target- ed therapy. Nat Commun. 2017;8(1):2185.
4. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
5. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. Lancet. 2018;391(10129):1524-1537.
6. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012;119(2):521-29.
7. Rose-Zerilli MJJ, Forster J, Parker H, et al. The correlation between deletion architec- ture, ATM mutational status and BIRC3 dis- ruption in 11q-deleted CLL. Blood. 2012;120(21):658-658.
8. Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247- 3254.
9. Puente XS, Bea S, Valdes-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015;526 (7574):519-524.
10. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
11. Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lympho- cytic leukemia. J Clin Oncol. 2010;28(29): 4473-4479.
12. Schnaiter A, Paschka P, Rossi M, et al. NOTCH1, SF3B1, and TP53 mutations in fludarabine-refractory CLL patients treated with alemtuzumab: results from the CLL2H trial of the GCLLSG. Blood. 2013;122(7): 1266-1270.
13. Winkelmann N, Rose-Zerilli M, Forster J, et al. Low frequency mutations independently predict poor treatment-free survival in early stage chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Haematologica. 2015;100(6):e237-239.
14. Han T, Ohtaki K, Sadamori N, et al. Cytogenetic evidence for clonal evolution in
B-cell chronic lymphocytic leukemia. Cancer
Genet Cytogenet. 1986;23(4):321-328.
15. Oscier D, Fitchett M, Herbert T, Lambert R. Karyotypic evolution in B-cell chronic lym- phocytic leukaemia. Genes Chromosomes
Cancer. 1991;3(1):16-20.
16.Shanafelt TD, Witzig TE, Fink SR, et al.
impact of the subclonal architecture and mutational complexity in chronic lympho- cytic leukemia. Leukemia. 2018;32(3):645- 653.
28. Wang J, Khiabanian H, Rossi D, et al. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. Elife. 2014;3:e02869.
29. Jones DT, Hutter B, Jager N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45 (8):927-932.
30. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy num- ber alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568- 576.
31.Carter SL, Cibulskis K, Helman E, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413-421.
32. Strino F, Parisi F, Micsinai M, Kluger Y. TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 2013;41(17):e165.
33. Jones DT, Jager N, Kool M, et al. Dissecting the genomic complexity underlying medul- loblastoma. Nature. 2012;488(7409):100- 105.
34. Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173 (2):371-385.
35. Beekman R, Chapaprieta V, Russinol N, et al. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med. 2018;24(6):868-880.
36. Amin NA, Seymour E, Saiya-Cork K, Parkin B, Shedden K, Malek SN. A Quantitative analysis of subclonal and clonal gene muta- tions before and after therapy in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(17):4525-4535.
37.Gruber M, Bozic I, Leshchiner I, et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature. 2019;570(7762):474-479.
38. Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica. 2019;104(9):e434-e437.
39. Blombery P, Anderson MA, Gong JN, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9(3):342-353.
40.Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286-2294.
17.
Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 2006;24(28):4634- 4641.
Stilgenbauer S, Sander S, Bullinger L, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica. 2007;92(9):1242-1245.
18.Knight SJ, Yau C, Clifford R, et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre- treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia. 2012;26(7):1564-1575.
19.Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recur- rent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101-105.
20. Landau DA, Wu CJ. Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med. 2013;5(5):47.
21.
22.
Schuh A, Becq J, Humphray S, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution pat- terns. Blood. 2012;120(20):4191-4196. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal muta- tions in chronic lymphocytic leukemia. Cell. 2013;152(4):714-726.
23.Ojha J, Ayres J, Secreto C, et al. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood. 2015;125(3):492-498.
24. Oakes CC, Claus R, Gu L, et al. Evolution of DNA methylation is linked to genetic aber- rations in chronic lymphocytic leukemia. Cancer Discov. 2014;4(3):348-361.
25. Rasi S, Khiabanian H, Ciardullo C, et al. Clinical impact of small subclones harboring NOTCH1, SF3B1 or BIRC3 mutations in chronic lymphocytic leukemia. Haematologica, 2016;101(4):135-138.
26. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122-2130.
27. Nadeu F, Clot G, Delgado J, et al. Clinical
614
haematologica | 2022; 107(3)