Page 46 - 2022_03-Haematologica-web
P. 46

S. Ramos-Campoy et al.
Disclosures
No conflicts of interest to disclose.
Contribution
AP and BE designed the research study; SR, AP and BE provid- ed patients data, analyzed the data and wrote the manuscript; SBo and JS performed a great proportion of genomic microarrays from cases which lacked this information; SBo, JS and SBe were involved in analysis, interpretation and critical discussion of the results; SBe, MJL, DC, HP, GMR, MO, MLB, RC, RS, TB, EG, CM, FB, XC, MJC, AC, JCS, FNK, DO and CH provided patient data and samples. All authors read the last version of the manuscript.
Acknowledgements
The authors would like to thank Idoya Ancín, Andrea Campeny, María Dolores García-Malo, Alberto Valiente, Marco Moro, Gonzalo Blanco, Ferran Nadeu and Julio Delgado for their contri- bution to the study providing patients samples and data and the
MARGenomics Platform from Institut Hospital del Mar d’Investigacions Mèdiques (Barcelona) for performing part of the genomic microarrays.
Funding
This work was partly supported by grants from Generalitat de Catalunya (17SGR437), Gilead Sciences Fellowship (GLD17/00282), Ministerio de Educación, Cultura y Deporte of Spain (FPU17/00361), Fundación Española de Hematología y Hemoterapia (FEHH-Janssen), Instituto de Salud Carlos III/FEDER (PT17/0015/0011) and the “Xarxa de Bancs de tumors“ sponsored by Pla Director d’Oncologia de Catalunya (XBTC).
Data sharing statement
Detailed chromosome banding analyses and genomic microar- rays profiles for selected cases are provided in the Online Supplementary Tables. Please contact either bespinet@parcde- salutmar.cat or apuiggros@imim.es for additional data.
References
1. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760.
2. Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3): 249-255.
3. Herling CD, Klaumünzer M, Rocha CK, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3): 395-404.
4. Puiggros A, Collado R, Calasanz MJ, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8(33): 54297-54303.
5. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lympho- cytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205- 1216.
6. Thompson PA, O'Brien SM, Wierda WG, et al. Complex karyotype is a stronger predic- tor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib- based regimens. Cancer. 2015;121(20):3612- 3621.
7. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, ben- damustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200-211.
8. Anderson MA, Tam C, Lew TE, et al. Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362-3370.
9. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic charac- terization of CLL: a study on 506 cases analysed with chromosome banding analy- sis, interphase FISH, IgV(H) status and
immunophenotyping. Leukemia. 2007;21
(12):2442-2451.
10. Badoux XC, Keating MJ, Wang X, et al.
Cyclophosphamide, fludarabine, alem- tuzumab, and rituximab as salvage therapy for heavily pretreated patients with chronic lymphocytic leukemia. Blood. 2011;118(8): 2085-2093.
11. Van Den Neste E, Robin V, Francart J, et al. Chromosomal translocations independently predict treatment failure, treatment-free sur- vival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715-1722.
12. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity con- ditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82-87.
13. Baliakas P, Puiggros A, Xochelli A, et al. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying tri- somy 12: the accompanying chromosome makes a difference. Haematologica. 2016;101 (7):e299-302.
14. Rigolin GM, Saccenti E, Guardalben E, et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnor- malities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181(2): 229-233.
15. Visentin A, Bonaldi L, Rigolin GM, et al. The combination of complex karyotype sub- types and IGHV mutational status identifies new prognostic and predictive groups in chronic lymphocytic leukaemia. Br J Cancer. 2019;121(2):150-156.
16. Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008;68(4):1012-1021.
17. Gunn SR, Bolla AR, Barron LL, et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallel- ic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk Res. 2009;33(9):1276-1281.
18. Kolquist KA, Schultz RA, Slovak ML, et al. Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analy- sis uncovers novel aberrations not detected
by FISH or cytogenetic analysis. Mol
Cytogenet. 2011;4:25.
19. Edelmann J, Holzmann K, Miller F, et al.
High-resolution genomic profiling of chron- ic lymphocytic leukemia reveals new recur- rent genomic alterations. Blood. 2012;120 (24):4783-4794.
20.Chun K, Wenger GD, Chaubey A, et al. Assessing copy number aberrations and copy-neutral loss-of-heterozygosity across the genome as best practice: an evidence- based review from the Cancer Genomics Consortium (CGC) working group for chronic lymphocytic leukemia. Cancer Genet. 2018;228-229:236-250.
21. Kujawski L, Ouillette P, Erba H, et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood. 2008;112(5):1993-2003.
22. Gunnarsson R, Mansouri L, Isaksson A, et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocyt- ic leukemia. Haematologica. 2011;96(8): 1161-1169.
23.Ouillette P, Collins R, Shakhan S, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118(11):3051-3061.
24. Schoumans J, Suela J, Hastings R, et al. Guidelines for genomic array analysis in acquired haematological neoplastic disor- ders. Genes Chromosomes Cancer. 2016;55(5):480-491.
25. Leeksma AC, Baliakas P, Moysiadis T, et al. Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic com- plexity: a multicenter study. Haematologica. 2020;106(1):87-97.
26. McGowan-Jordan J, Simons A, Schmid M, International Standing Committee on Human Cytogenetic Nomenclature. ISCN: An International System for Human Cytogenomic Nomenclature. Basel; New York: Karger; 2016.
27. Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
28. Rigolin GM, Cavallari M, Quaglia FM, et al. In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129(26):3495-3498.
29. Puiggros A, Puigdecanet E, Salido M, et al.
602
haematologica | 2022; 107(3)


































































































   44   45   46   47   48