Page 157 - 2022_03-Haematologica-web
P. 157
Deregulation of JAK2 signaling underlies pcAECyTCL
Contributions
ANBT, DF, RW, MV, EB and CPT conceptualized and designed the project; ANBT and CPT wrote the manuscript; ANBT, DC and HM performed the bioinformatic analyses; ANBT, JO, DF and LV performed the experiments; ANBT and DC produced figures and tables; ANBT analyzed the results and interpreted the data; DF, LV, RW, MV and EB provided valuable biological specimens; ANBT, DC, JO, DF, HM, LV, RW, MV, EB, and CPT revised and approved the final manuscript.
Acknowledgements
TheauthorsthankTimvanGroningenandYixinLuoforpro- viding valuable technical support.
Funding
This study was funded by the Dutch Cancer Society (KWF, grant UL2013-6104) and Associazione Amici di Sabrina Fadini Onlus (A.S.F.O., grant 0800000-PR-LUMC).
References
1. Berti E, Gaulard P, Willemze R, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th ed. Lyon: IARC; 2017.
2. Willemze R, Jaffe ES, Burg G, et al. WHO- EORTC classification for cutaneous lym- phomas. Blood. 2005;105(10):3768-3785.
3. Berti E, Tomasini D, Vermeer MH, Meijer CJLM, Alessi E, Willemze R. Primary cuta- neous CD8-positive epidermotropic cyto- toxic T cell lymphomas. Am J Pathol. 1999;155(2):483-492.
4. Guitart J, Martinez-Escala ME, Subtil A, et al. Primary cutaneous aggressive epider- motropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lym- phomas. Mod Pathol. 2017;30(5):761-772.
5. Fanoni D, Corti L, Alberti-Violetti S, et al. Array-based CGH of primary cutaneous CD8+ aggressive EPIDERMO-tropic cyto- toxic T-cell lymphoma. Genes Chromosomes Cancer. 2018;57(12):622- 629.
6.Kato K, Oh Y, Takita J, et al. Molecular genetic and cytogenetic analysis of a pri- mary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lym- phoma. Int J Hematol. 2016;103(2):196- 201.
7. Tomasini C, Novelli M, Fanoni D, Berti EF. Erythema multiforme-like lesions in pri- mary cutaneous aggressive cytotoxic epi- dermotropic CD8+ T-cell lymphoma: A diagnostic and therapeutic challenge. J Cutan Pathol. 2017;44(10):867-873.
8.Lu H, Villafane N, Dogruluk T, et al. Engineering and functional characterization of fusion genes identifies novel oncogenic drivers of cancer. Cancer Res. 2017;77(13):3502-3512.
9. Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956-1962.
10. Paczkowska J, Soloch N, Bodnar M, et al. Expression of ELF1, a lymphoid ETS domain-containing transcription factor, is recurrently lost in classical Hodgkin lym- phoma. Br J Haematol. 2019;185(1):79-88.
11. Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disor- ders. Leukemia. 2017;31(8):1661-1670.
12. Degryse S, de Bock CE, Cox L, et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood. 2014;124(20):3092-3100.
13. Yamashita Y, Yuan J, Suetake I, et al. Array- based genomic resequencing of human leukemia. Oncogene. 2010;29(25):3723- 3731.
14. Rajala HL, Eldfors S, Kuusanmaki H, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121(22):4541-4550.
15. Lanikova L, Babosova O, Swierczek S, et al. Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in poly- cythemia vera. Blood. 2016;128(18):2266- 2270.
16. Andersson EI, Putzer S, Yadav B, et al. Discovery of novel drug sensitivities in T- PLL by high-throughput ex vivo drug test- ing and mutation profiling. Leukemia. 2018;32(3):774-787.
17. Bandapalli OR, Schuessele S, Kunz JB, et al. The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse. Haematologica. 2014;99(10):e188-192.
18. Takamura S. Niches for the Long-term maintenance of tissue-resident memory T cells. Front Immunol. 2018;9:1214.
19. Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myelopro- liferative neoplasms. Blood. 2010;115(15): 3109-3117.
27. Waldmann TA, Chen J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol. 2017;35:533-550.
28. Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 2019;118:48-63.
29. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673-683.
30. Baughn LB, Meredith MM, Oseth L, Smolarek TA, Hirsch B. SH2B3 aberrations enriched in iAMP21 B lymphoblastic leukemia. Cancer Genet. 2018;226-227:30- 35.
31. Pham HTT, Maurer B, Prchal-Murphy M, et al. STAT5BN642H is a driver mutation for T cell neoplasia. J Clin Invest. 2018;128 (1):387-401.
32. de Araujo ED, Erdogan F, Neubauer HA, et al. Structural and functional consequences of the STAT5B(N642H) driver mutation. Nat Commun. 2019;10(1):2517.
33. Woollard WJ, Pullabhatla V, Lorenc A, et al. Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. Blood. 2016;127(26):3387-3397.
34. Wang L, Ni X, Covington KR, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426-1434.
35.McGirt LY, Jia P, Baerenwald DA, et al. Whole-genome sequencing reveals onco- genic mutations in mycosis fungoides. Blood. 2015;126(4):508-519.
36. Kiel MJ, Sahasrabuddhe AA, Rolland DC, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun. 2015;6:8470.
37. da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47(12):1465- 1470.
38. Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011-1019.
39. Bastidas Torres AN, Cats D, Mei H, et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer. 2018;57(12):653- 664.
40. Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab. 2007;18(1):38-45.
41. Liu X, Qu CK. Protein tyrosine phos- phatase SHP-2 (PTPN11) in hematopoiesis and leukemogenesis. J Signal Transduct. 2011;2011:195239.
42. Rui L, Carter-Su C. Identification of SH2-
20.
Smith CA, Fan G. The saga of JAK2 muta- tions and translocations in hematologic dis- orders: pathogenesis, diagnostic and thera- peutic prospects, and revised World Health Organization diagnostic criteria for myelo- proliferative neoplasms. Hum Pathol. 2008;39(6):795-810.
21.Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005;65(7): 2662-2667.
22.Lierman E, Selleslag D, Smits S, Billiet J, Vandenberghe P. Ruxolitinib inhibits trans- forming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood. 2012;120(7):1529-1531.
23. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.
24. Greco A, Fusetti L, Miranda C, et al. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene. 1998;16(6):809-816.
25.Hernandez L, Bea S, Bellosillo B, et al. Diversity of genomic breakpoints in TFG- ALK translocations in anaplastic large cell lymphomas: identification of a new TFG- ALK(XL) chimeric gene with transforming activity. Am J Pathol. 2002;160(4):1487- 1494.
26.
Hedvat M, Huszar D, Herrmann A, et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell. 2009;16(6):487-497.
haematologica | 2022; 107(3)
713