Page 110 - 2022_03-Haematologica-web
P. 110

N. van Leeuwen-Kerkhoff et al.
myeloid dendritic cells. J Leukoc Biol.
2017;102(4):1055-1068.
12. Hofer TP, Zawada AM, Frankenberger M,
et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor muta- tion. Blood. 2015;126(24):2601-2611.
13. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245-252.
14. Mohty M, Isnardon D, Vey N, et al. Low blood dendritic cells in chronic myeloid leukaemia patients correlates with loss of CD34+/CD38- primitive haematopoietic progenitors. Br J Haematol. 2002; 119(1):115-118.
15. Mohty, M, Jarrosay, D, Lafage-Pochitaloff L, et al. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood. 2001;98(13):3750-3756.
16. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132(15): 1553-1560.
17. Epling-Burnette PK, Bai F, Painter JS, et al. Reduced natural killer (NK) function associ- ated with high-risk myelodysplastic syn- drome (MDS) and reduced expression of activating NK receptors. Blood. 2007;109 (11):4816-4824.
18. Kiladjian J-J, Bourgeois E, Lobe I, et al. Cytolytic function and survival of natural killer cells are severely altered in myelodys- plastic syndromes. Leukemia. 2006; 20(3):463-470.
19. Kordasti SY, Afzali B, Lim Z, et al. IL-17- producing CD4(+) T cells, pro-inflammato- ry cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol. 2009;145(1):64-72.
20.Bouchliou I, Miltiades P, Nakou E, et al. Th17 and Foxp3(+) T regulatory cell dynamics and distribution in myelodys- plastic syndromes. Clin Immunol. 2011;139(3):350-359.
21. Kordasti SY, Ingram W, Hayden J, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110(3):847-850.
22. Kotsianidis I, Bouchliou I, Nakou E, et al. Kinetics, function and bone marrow traf- ficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 2009;23(3):510-518.
23. Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulato- ry cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2015;5(2):e1062208.
24. Saft L, Björklund E, Berg E, et al. Bone mar- row dendritic cells are reduced in patients with high-risk myelodysplastic syndromes. Leuk Res. 2013;37(3):266-273.
25.Ma L, Delforge M, van Duppen V, et al. Circulating myeloid and lymphoid precur- sor dendritic cells are clonally involved in myelodysplastic syndromes. Leukemia. 2004;18(9):1451-1456.
26. Ma L, Ceuppens J, Kasran A, et al. Immature and mature monocyte-derived dendritic cells in myelodysplastic syn- dromes of subtypes refractory anemia or refractory anemia with ringed sideroblasts display an altered cytokine profile. Leuk Res. 2007;31(10):1373-1382.
27. Matteo Rigolin G, Howard J, Buggins A, et al. Phenotypic and functional characteris- tics of monocyte-derived dendritic cells
from patients with myelodysplastic syn- dromes. Br J Haematol. 1999;107(4):844- 850.
28. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-2088.
29. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465.
30.Kotecha N, Krutzik PO, Irish JM. Web- based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010;Chapter 10:Unit10.17.
31. Van Der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008;9:2579-2605.
32. Van Gassen S, Callebaut B, Van Helden MJ, et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636-645.
33. Nizzoli G, Krietsch J, Weick A, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T cell responses. Blood. 2013;122(6):932- 942.
34. Perrot I, Blanchard D, Freymond N, et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol. 2007;178(5):2763-2769.
35. Della Bella S, Gennaro M, Vaccari M, et al. Altered maturation of peripheral blood dendritic cells in patients with breast can- cer. Br J Cancer. 2003;89(8):1463-1472.
36. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. 2015;194(7):2985-2991.
37. Chan VS-F, Nie Y-J, Shen N, et al. Distinct roles of myeloid and plasmacytoid dendrit- ic cells in systemic lupus erythematosus. Autoimmun Rev. 2012;11(12):890-897.
38. Carvalheiro T, Rodrigues A, Lopes A, et al. Tolerogenic versus inflammatory activity of peripheral blood monocytes and dendrit- ic cells subpopulations in systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:934161.
39.Orsini E, Calabrese E, Maggio R, et al. Circulating myeloid dendritic cell directly isolated from patients with chronic myel- ogenous leukemia are functional and carry the bcr-abl translocation. Leuk Res. 2006;30(7):785-794.
40. Dong R, Cwynarski K, Entwistle A, et al. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood. 2003;101(9):3560-3567.
41. Dhodapkar KM, Barbuto S, Matthews P, et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood. 2008;112(7):2878-2885.
42. Leone P, Berardi S, Frassanito MA, et al. Dendritic cells accumulate in the bone mar- row of myeloma patients where they pro- tect tumor plasma cells from CD8+ T-cell killing. Blood. 2015;126(12):1443-1451.
43. Saulep-Easton D, Vincent FB, Le Page M, et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lympho- cytic leukemia. Leukemia. 2014; 28(10):2005-2015.
44. Hänsel A, Günther C, Baran W, et al. Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important pro-inflammatory cell type
in lupus erythematosus. J Autoimmun.
2013;40:1-8.
45. Hänsel A, Günther C, Ingwersen J, et al.
Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol. 2011;127(3):787-794.
46.Thomas K, Dietze K, Wehner R, et al. Accumulation and therapeutic modulation of 6-sulfo LacNAc(+) dendritic cells in mul- tiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2014;1(3):e33.
47.Bsat M, Chapuy L, Baba N, et al. Differential accumulation and function of proinflammatory 6-sulfo LacNAc dendritic cells in lymph node and colon of Crohn’s versus ulcerative colitis patients. J Leukoc Biol. 2015;98(4):671-681.
48.
49.
Ogino T, Nishimura J, Barman S, et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lam- ina propria of patients with Crohn’s dis- ease. Gastroenterology. 2013;145(6):1380- 1391.
Olaru F, Döbel T, Lonsdorf AS, et al. Intracapillary immune complexes recruit and activate slan-expressing CD16+ mono- cytes in human lupus nephritis. JCI Insight. 2018;3(11):e96492.
50.Baran W, Oehrl S, Ahmad F, et al. Phenotype, function, and mobilization of 6-sulfo LacNAc-expressing monocytes in atopic dermatitis. Front Immunol. 2018;9:1352.
51. Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol. 2019;10:948.
52. Vermi W, Micheletti A, Lonardi S, et al. slanDCs selectively accumulate in carcino- ma-draining lymph nodes and marginate metastatic cells. Nat Commun. 2014;5 (1):3029.
53. Vermi W, Micheletti A, Finotti G, et al. slan+ Monocytes and macrophages medi- ate CD20-dependent B-cell lymphoma elimination via ADCC and ADCP. Cancer Res. 2018;78(13):3544-3559.
54.Toma M, Wehner R, Kloß A, et al. Accumulation of tolerogenic human 6-sulfo LacNAc dendritic cells in renal cell carcino- ma is associated with poor prognosis. Oncoimmunology. 2015;4(6):e1008342.
55. Lamarthée B, de Vassoigne F, Malard F, et al. Quantitative and functional alterations of 6-sulfo LacNac dendritic cells in multiple myeloma. Oncoimmunology. 2018;7(7):e1444411.
56. Micheva I, Thanopoulou E, Michalopoulou S, et al. Defective tumor necrosis factor alpha-induced maturation of monocyte- derived dendritic cells in patients with myelodysplastic syndromes. Clin Immunol. 2004;113(3):31031-31037.
57. Davison GM, Novitzky N, Abdulla R. Monocyte derived dendritic cells have reduced expression of co-stimulatory mole- cules but are able to stimulate autologous T-cells in patients with MDS. Hematol Oncol Stem Cell Ther. 2013;6(2):49-57.
58. Micheva I, Thanopoulou E, Michalopoulou S, et al. Impaired generation of bone mar- row CD34-derived dendritic cells with low peripheral blood subsets in patients with myelodysplastic syndrome. Br J Haematol. 2004;126(6):806-814.
59. Wang Z, Tang X, Xu W, et al. The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with
666
haematologica | 2022; 107(3)


































































































   108   109   110   111   112