Page 74 - 2022_02-Haematologica-web
P. 74

R. Birsen et al.
19. Lehmann S, Bykov VJN, Ali D, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR- 246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633-3639.
20. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regu- lator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-1191.
21. Sun L, Wang H, Wang Z, et al. Mixed line- age kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1-2):213-227.
22. Takahashi N, Duprez L, Grootjans S, et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3(11):e437.
23. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5):1060-1072.
24. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273-285.
25. Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferrop- tosis? PLoS Biol. 2018;16(5):e2006203.
26. Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox home- ostasis and nutrient dependency of cancer. Cancer Commun (Lond). 2018;38(1):12.
27. Ishii T, Bannai S, Sugita Y. Mechanism of growth stimulation of L1210 cells by 2- mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 1981;256(23):12387- 12392.
28. Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glu- tamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523.
29. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell
death by GPX4. Cell. 2014;156(1):317-331. 30.Gaschler MM, Andia AA, Liu H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem
Biol. 2018;14(5):507-515.
31. Perdrix A, Najem A, Saussez S, et al.
PRIMA-1 and PRIMA-1Met (APR-246): from mutant/wild type p53 reactivation to unexpected mechanisms underlying their potent anti-tumor effect in combinatorial therapies. Cancers (Basel). 2017;9(12):172.
32. Bykov VJN, Zache N, Stridh H, et al. PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis. Oncogene. 2005;24(21):3484-3491.
33. Lambert JMR, Moshfegh A, Hainaut P, Wiman KG, Bykov VJN. Mutant p53 reacti- vation by PRIMA-1 MET induces multiple signaling pathways converging on apopto- sis. Oncogene. 2010;29(9):1329-1338.
34. Duan W, Gao L, Wu X, et al. MicroRNA- 34a is an important component of PRIMA- 1-induced apoptotic network in human lung cancer cells. Int J Cancer. 2010;127 (2):313-320.
35.Roh J-L, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM. p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. 2011;47(1):8-15.
36. Izetti P, Hautefeuille A, Abujamra AL, et al. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreat- ic cancer cell lines. Invest New Drugs. 2014;32(5):783-794.
37. Liu DSH, Read M, Cullinane C, et al. APR- 246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut. 2015;64(10):1506-1516.
38. Ogiwara H, Takahashi K, Sasaki M, et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell. 2019;35(2):177-190.e8.
39. Ali D, Jönsson-Videsäter K, Deneberg S, et al. APR-246 exhibits anti-leukemic activity
and synergism with conventional chemotherapeutic drugs in acute myeloid leukemia cells. Eur J Haematol. 2011;86 (3):206-215.
40.Nahi H, Lehmann S, Mollgard L, et al. Effects of PRIMA-1 on chronic lymphocytic leukaemia cells with and without hemizy- gous p53 deletion. Br J Haematol. 2004; 127(3):285-291.
41. Miess H, Dankworth B, Gouw AM, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell car- cinoma. Oncogene. 2018;37(40):5435-5450.
42. Tsoi J, Robert L, Paraiso K, et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug- induced iron-dependent oxidative stress. Cancer Cell. 2018;33(5):890-904.e5.
43. Zou Y, Palte MJ, Deik AA, et al. A GPX4- dependent cancer cell state underlies the clear-cell morphology and confers sensitiv- ity to ferroptosis. Nat Commun. 2019;10(1):1617.
44. Yu Y, Xie Y, Cao L, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemother- apeutic agents. Mol Cell Oncol. 2015; 2(4):e1054549.
45. Jones CL, Stevens BM, D’Alessandro A, et al. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood. 2019;134(4): 389-394.
46. Hoeks M, Yu G, Langemeijer S, et al. Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry. Haematologica. 2020;105(3):640-651.
47.Wu J-R, Tuo Q-Z, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197-206.
48. Cardoso BR, Hare DJ, Bush AI, Roberts BR. Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry. 2017; 22(3):328-335.
416
haematologica | 2022; 107(2)


































































































   72   73   74   75   76