Page 50 - 2022_02-Haematologica-web
P. 50
H.R. Lee et al.
Effects of interleukin-4 and interleukin-6 on the proliferation of CD34+ and CD34- blasts from acute myelogenous leukemia. Blood. 1991;78(1):197-204.
36. Piccaluga PP, Rossi M, Agostinelli C, et al. Platelet-derived growth factor alpha medi- ates the proliferation of peripheral T-cell lymphoma cells via an autocrine regulatory pathway. Leukemia. 2014;28(8):1687-1697.
37.Tsuyada A, Chow A, Wu J, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11): 2768-2779.
38. Ding W, Knox TR, Tschumper RC, et al. Platelet-derived growth factor (PDGF)- PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood. 2010;116(16):2984-2993.
39. Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M. Inflammatory cytokines and signaling pathways are asso- ciated with survival of primary chronic lymphocytic leukemia cells in vitro: a dom- inant role of CCL2. Haematologica. 2011;96(3):408-416.
40. Juneja HS, Schmalsteig FC, Lee S, Chen J. Vascular cell adhesion molecule-1 and VLA-4 are obligatory adhesion proteins in the heterotypic adherence between human leukemia/lymphoma cells and marrow stromal cells. Exp Hematol. 1993;21(3):444- 450.
41. Morikawa S, Mabuchi Y, Kubota Y, et al. Prospective identification, isolation, and sys- temic transplantation of multipotent mes- enchymal stem cells in murine bone mar- row. J Exp Med. 2009;206(11):2483-2496.
42.Pinho S, Lacombe J, Hanoun M, et al. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7): 1351-1367.
43.Qian H, Le Blanc K, Sigvardsson M. Primary mesenchymal stem and progenitor
cells from bone marrow lack expression of CD44 protein. J Biol Chem. 2012;287(31): 25795-25807.
44. Peault B, Weissman IL, Buckle AM, Tsukamoto A, Baum C. Thy-1-expressing CD34+ human cells express multiple hematopoietic potentialities in vitro and in SCID-hu mice. Nouv Rev Fr Hematol. 1993;35(1):91-93.
45.Buccisano F, Rossi FM, Venditti A, et al. CD90/Thy-1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias. Br J Haematol. 2004;125(2): 203-212.
46. Yamazaki H, Nishida H, Iwata S, Dang NH, Morimoto C. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochem Biophys Res Commun. 2009;383(2):172-177.
47.Saito Y, Kitamura H, Hijikata A, et al. Identification of therapeutic targets for qui- escent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2(17):17ra19.
48. Oh IH, Kwon KR. Concise review: multiple niches for hematopoietic stem cell regula- tions. Stem Cells. 2010;28(7):1243-1249.
49. Wei Q, Frenette PS. Niches for hematopoi- etic stem cells and their progeny. Immunity. 2018;48(4):632-648.
50. Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-834.
51. Kwon KR, Ahn JY, Kim MS, Jung JY, Lee JH, Oh IH. Disruption of bis leads to the dete- rioration of the vascular niche for hematopoietic stem cells. Stem Cells. 2010;28(2):268-278.
52.Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324-336.
53. Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state.
Proc Natl Acad Sci U S A. 2011;108
(19):7950-7955.
54. da Silva-Diz V, Lorenzo-Sanz L, Bernat-
Peguera A, Lopez-Cerda M, Munoz P. Cancer cell plasticity: impact on tumor pro- gression and therapy response. Semin Cancer Biol. 2018;53:48-58.
55. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor hetero- geneity in cancer evolution. Cancer Cell. 2015;27(1):15-26.
56. Sprouffske K, Athena Aktipis C, Radich JP, Carroll M, Nedelcu AM, Maley CC. An evolutionary explanation for the presence of cancer nonstem cells in neoplasms. Evol Appl. 2013;6(1):92-101.
57. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C. Translational implications of tumor heterogeneity. Clin Cancer Res. 2015;21(6):1258-1266.
58.Quek L, David MD, Kennedy A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med. 2018;24(8):1167- 1177.
59. Peña-Martínez P, Eriksson M, Ramakrishnan R, et al. Interleukin 4 induces apoptosis of acute myeloid leukemia cells in a Stat6-dependent man- ner. Leukemia. 2018;32(3):588-596.
60. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self- reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285-299.
61. Zhang B, Ho YW, Huang Q, et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myeloge- nous leukemia. Cancer Cell. 2012;21(4): 577-592.
62.Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325-4336.
392
haematologica | 2022; 107(2)