Page 49 - 2022_02-Haematologica-web
P. 49

Functional switching of leukemic cells by stromal contact
of mutation-driven clonal evolution in leukemic blasts (Online Supplementary Figure S14). These findings thus pro- vide further insight into the multiple mechanisms for devel- opment of drug-resistance that could generate leukemic cells with distinct characteristics and chemoresistance, highlighting the importance of the microenvironment in this process. This supports the need for better defining the mechanisms of drug resistance in leukemia patients, and could lead to the development of more comprehensive management of leukemic diseases.
Disclosures
No conflicts of interest to disclose.
Contribution
HRL, GYL, EWK, HJK performed experiments and collected data, MHL performed experiments on genomics and statistical analysis of data; RHK conceptualized research, provided study
materials and wrote the manuscript; IHO conceptualized idea and research, supervised research, wrote the manuscript and provided financial support
Acknowledgements
We thank Dr. Lee, Jeong-Hwa (College of Medicine, Catholic University of Korea) for the kind supply of bis knock-out mice and Dr. Kang, Chang-Yul (College of Pharmacy, Seoul National University) for the kind supply of mice lacking the IL-4 receptor and Life Science Editors for manuscript editing. We thank Dr. Jin- A Kim for help in clinical data processing. We also thank the Department of Biostatistics of the Catholic Research Coordinating Center for statistical support.
Funding
This study was supported by the NRF of Korea and funded by Ministry of Science, ICT, & Future Planning (2017M3A9B3061947)
References
1. Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894- 1907.
2. Craddock C, Tauro S, Moss P, Grimwade D. Biology and management of relapsed acute myeloid leukaemia. Br J Haematol. 2005;129(1):18-34.
3. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264- 278.
4. Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506- 510.
5. Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25(3):379-392.
6. Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci. 2005;1044:1-5.
7. Hope KJ, Jin L, Dick JE. Acute myeloid
leukemia originates from a hierarchy of leukemic stem cell classes that differ in self- renewal capacity. Nat Immunol. 2004;5 (7):738-743.
8. Eppert K, Takenaka K, Lechman ER, et al. Stem cell gene expression programs influ- ence clinical outcome in human leukemia. Nat Med. 2011;17(9):1086-1093.
9. Guenechea G, Gan OI, Dorrell C, Dick JE. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol. 2001;2(1):75-82.
10. Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia. 2009;23(12):2233-2241.
11. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002;16(9):1713-1724.
12. Katsumi A, Kiyoi H, Abe A, et al. FLT3/ ITD regulates leukaemia cell adhesion through alpha4beta1 integrin and Pyk2 sig- nalling. Eur J Haematol. 2011;86(3):191- 198.
13.Ninomiya M, Abe A, Katsumi A, et al. Homing, proliferation and survival sites of human leukemia cells in vivo in immunod-
eficient mice. Leukemia. 2007;21(1):136-
142.
14.Saito Y, Uchida N, Tanaka S, et al.
Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol. 2010;28(3):275-280.
15.Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone- marrow endosteal region. Nat Biotechnol. 2007;25(11):1315-1321.
16. Doepfner KT, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol. 2007;63(3):215-230.
17. Youn DY, Lee DH, Lim MH, et al. Bis defi- ciency results in early lethality with meta- bolic deterioration and involution of spleen and thymus. Am J Physiol Endocrinol Metab. 2008;295(6):E1349-1357.
18. Kim IK, Kim BS, Koh CH, et al. Glucocorticoid-induced tumor necrosis fac- tor receptor-related protein co-stimulation facilitates tumor regression by inducing IL- 9-producing helper T cells. Nat Med. 2015;21(9):1010-1017.
19.Kim JA, Shim JS, Lee GY, et al. Microenvironmental remodeling as a parameter and prognostic factor of hetero- geneous leukemogenesis in acute myeloge- nous leukemia. Cancer Res. 2015;75(11):2222-2231.
20. Kim JH, Lee HS, Choi HK, et al. Heterogeneous niche activity of ex-vivo expanded MSCs as factor for variable out- comes in hematopoietic recovery. PloS One. 2016;11(12):e0168036.
21. Heuser M, Argiropoulos B, Kuchenbauer F, et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood. 2007;110(5):1639-1647.
22. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998;17(13):3714- 3725.
23. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high- throughput sequencing data. Bioinformatics. 2015;31(2):166-169.
24. Robinson MD, McCarthy DJ, Smyth GK.
edgeR: a Bioconductor package for differ- ential expression analysis of digital gene expression data. Bioinformatics. 2010;26 (1):139-140.
25. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics. 2007;23(23): 3251-3253.
26. Cogle CR, Goldman DC, Madlambayan GJ, et al. Functional integration of acute myeloid leukemia into the vascular niche. Leukemia. 2014;28(10):1978-1987.
27. Moschoi R, Imbert V, Nebout M, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemothera- py. Blood. 2016;128(2):253-264.
28. Wang J, Liu X, Qiu Y, et al. Cell adhesion- mediated mitochondria transfer con- tributes to mesenchymal stem cell-induced chemoresistance on T cell acute lym- phoblastic leukemia cells. J Hematol Oncol. 2018;11(1):11.
29. Zuber J, Radtke I, Pardee TS, et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 2009;23(7):877-889.
30. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
31. Kittang AO, Hatfield K, Sand K, Reikvam H, Bruserud O. The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications. Curr Top Microbiol Immunol. 2010;341:149-172.
32. Hassan HT, Zander A. Stem cell factor as a survival and growth factor in human nor- mal and malignant hematopoiesis. Acta Haematol. 1996;95(3-4):257-262.
33. Mazur G, Wrobel T, Butrym A, Kapelko- Slowik K, Poreba R, Kuliczkowski K. Increased monocyte chemoattractant pro- tein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma. 2007;54(4): 285-289.
34. Yang J, Liu X, Nyland SB, et al. Platelet- derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. Blood. 2010;115(1):51-60.
35. Akashi K, Harada M, Shibuya T, et al.
haematologica | 2022; 107(2)
391


































































































   47   48   49   50   51