Page 28 - 2022_02-Haematologica-web
P. 28
V. Krishnan et al.
associated DNMT3A mutations reduce protein stability and may be associated with poorer prognosis. Blood. 2018;132 (Suppl 1):1315.
49. Adnan Awad S, Dufva O, Ianevski A, et al. RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia. 2021;35(4): 1087-1099.
50. Warsch W, Kollmann K, Eckelhart E, et al. High STAT5 levels mediate imatinib resist- ance and indicate disease progression in chronic myeloid leukemia. Blood. 2011;117 (12):3409-3420.
51. Beer PA, Knapp DJ, Miller PH, et al. Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression. Blood. 2015;125(3): 504-515.
52. Thomson DW, Shahrin NH, Wang PPS, et al. Aberrant RAG-mediated recombination contributes to multiple structural rearrange- ments in lymphoid blast crisis of chronic myeloid leukemia. Leukemia. 2020;34(8): 2051-2063.
53. Giotopoulos G, van der Weyden L, Osaki H, et al. A novel mouse model identifies cooperating mutations and therapeutic tar- gets critical for chronic myeloid leukemia progression. J Exp Med. 2015;212(10):1551- 1569.
54. Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328-341.
55. Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019; 366(6465):eaan4673.
56.Schmidt M, Rinke J, Schafer V, et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia. 2014;28(12):2292-2299.
57. Kim T, Tyndel MS, Kim HJ, et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood. 2017;129 (1):38-47.
58. Jeong M, Sun D, Luo M, et al. Large con- served domains of low DNA methylation maintained by Dnmt3a. Nat Genet. 2014;46(1):17-23.
59. Abdel-Wahab O, Gao J, Adli M, et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 2013;210(12):2641-2659.
60. Sano S, Oshima K, Wang Y, et al. CRISPR- mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res. 2018;123(3):335-341.
61. Sano S, Oshima K, Wang Y, et al. Tet2- mediated clonal hematopoiesis accelerates heart failure through a mechanism involv- ing the IL-1beta/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71(8):875-886.
62. Arends CM, Galan-Sousa J, Hoyer K, et al. Hematopoietic lineage distribution and
evolutionary dynamics of clonal hematopoiesis. Leukemia. 2018;32(9):1908- 1919.
63. Welner RS, Amabile G, Bararia D, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell. 2015;27(5):671-681.
64. Hughes A, Yong ASM. Immune effector recovery in chronic myeloid leukemia and treatment-free remission. Front Immunol. 2017;8:469.
65.Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166-1176.
Genet. 2018;56(3):149-175.
78. Heller G, Topakian T, Altenberger C, et al.
Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia. Leukemia. 2016;30(9):1861-1868.
79. Mancini M, Veljkovic N, Leo E, et al. Cytoplasmatic compartmentalization by Bcr-Abl promotes TET2 loss-of-function in chronic myeloid leukemia. J Cell Biochem. 2012;113(8):2765-2774.
80. Amabile G, Di Ruscio A, Muller F, et al. Dissecting the role of aberrant DNA methylation in human leukaemia. Nat Commun. 2015;6:7091.
81. Issa JP, Gharibyan V, Cortes J, et al. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resist- ant to imatinib mesylate. J Clin Oncol. 2005;23(17):3948-3956.
82. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314-322.
83. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to com- mitted murine hematopoietic progenitors. Cancer Cell. 2004;6(6):587-596.
84. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV. The presence of typ- ical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assess- ment of minimal residual disease. Blood. 1998;92(9):3362-3367.
85.Sparano JA, Gray RJ, Makower DF, et al. Adjuvant chemotherapy guided by a 21- gene expression assay in breast cancer. N Engl J Med. 2018;379(2):111-121.
86. Ng SW, Mitchell A, Kennedy JA, et al. A 17- gene stemness score for rapid determina- tion of risk in acute leukaemia. Nature. 2016;540(7633):433-437.
87. Bill M, Nicolet D, Kohlschmidt J, et al. Mutations associated with a 17-gene leukemia stem cell score and the score's prognostic relevance in the context of the European LeukemiaNet classification of acute myeloid leukemia. Haematologica. 2020;105(3):721-729.
88. Shanmuganathan N, Pagani IS, Ross DM, et al. Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment- free remission in chronic myeloid leukemia. Blood. 2021;137(9):1196-1207.
89. Radich JP, Larson R, Kantarjian H, et al. Gene expression signature predicts deep molecular response (DMR) in chronic myeloid leukemia (CML): an exploratory biomarker analysis from ENESTnd [Abstract]. Blood. 2019;34;(Suppl_1):665.
90. Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early stage breast cancer. Nat Rev Clin Oncol. 2017;14(10):595-610.
91. Teutsch SM, Bradley LA, Palomaki GE, et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet Med. 2009;11(1):3-14.
66.
Yong AS, Keyvanfar K, Hensel N, et al. Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood. 2009;113(4):875-882.
67. Koschmieder S, Vetrie D. Epigenetic dys- regulation in chronic myeloid leukaemia: a myriad of mechanisms and therapeutic options. Semin Cancer Biol. 2018;51:180- 197.
68. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846-856.
69. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013;109(2):299-306.
70.Wong SJ, Gearhart MD, Taylor AB, et al. KDM2B recruitment of the polycomb group complex, PRC1.1, requires coopera- tion between PCGF1 and BCORL1. Structure. 2016;24(10):1795-1801.
71.Yu M, Mazor T, Huang H, et al. Direct recruitment of polycomb repressive com- plex 1 to chromatin by core binding tran- scription factors. Mol Cell. 2012;45(3):330- 343.
72. Oravecz A, Apostolov A, Polak K, et al. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2. Nat Commun. 2015;6:8823.
73.Xie H, Peng C, Huang J, et al. Chronic myelogenous leukemia-initiating cells require polycomb group protein EZH2. Cancer Discov. 2016;6(11):1237-1247.
74.Scott MT, Korfi K, Saffrey P, et al. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. Cancer Discov. 2016;6(11):1248-1257.
75. Rizo A, Horton SJ, Olthof S, et al. BMI1 col- laborates with BCR-ABL in leukemic trans- formation of human CD34+ cells. Blood. 2010;116(22):4621-4630.
76. Sengupta A, Ficker AM, Dunn SK, Madhu M, Cancelas JA. Bmi1 reprograms CML B- lymphoid progenitors to become B-ALL- initiating cells. Blood. 2012;119(2):494-502.
77. Behzad MM, Shahrabi S, Jaseb K, et al. Aberrant DNA methylation in chronic myeloid leukemia: cell fate control, progno- sis, and therapeutic response. Biochem
370
haematologica | 2022; 107(2)