Page 27 - 2022_02-Haematologica-web
P. 27
GE-based biomarkers in CML
References
1. Rowley JD. Letter: A new consistent chro- mosomal abnormality in chronic myeloge- nous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290-293.
2. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254-2264.
3. Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood. 2008;112(13):4808-4817.
4. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood. 2017;129(12): 1595-1606.
5. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommenda- tions for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966-984.
6. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multi- centre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029-1035.
7. Ross DM, Hughes TP. Treatment-free remission in patients with chronic myeloid leukaemia. Nat Rev Clin Oncol. 2020;17 (8):493-503.
8.Branford S, Fletcher L, Cross NC, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpre- tation of individual patient response and comparison of response rates between clin- ical trials. Blood. 2008;112(8):3330-3338.
9. Malhotra H, Radich J, Garcia-Gonzalez P. Meeting the needs of CML patients in resource-poor countries. Hematology Am Soc Hematol Educ Program. 2019;2019 (1):433-442.
10. Ko TK, Javed A, Lee KL, et al. An integra- tive model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135 (26):2337-2353.
11. McWeeney SK, Pemberton LC, Loriaux MM, et al. A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib. Blood. 2010;115(2):315-325.
12. Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV. The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood. 2007;110(1):380-383.
13. Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV. Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of pro- teinase 3 or elastase, as predictors of longer survival in patients with CML. Blood. 2006;107(1):205-212.
14. Branford S, Wang P, Yeung DT, et al. Integrative genomic analysis reveals cancer- associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132(9):948-961.
15. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12 (1):8.
16. Kaneta Y, Kagami Y, Katagiri T, et al. Prediction of sensitivity to STI571 among chronic myeloid leukemia patients by
genome-wide cDNA microarray analysis.
Jpn J Cancer Res. 2002;93(8):849-856.
17. McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M. Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin Cancer
2017;23(6):692-702.
33. Inselmann S, Wang Y, Saussele S, et al.
Development, function, and clinical signifi- cance of plasmacytoid dendritic cells in chronic myeloid leukemia. Cancer Res. 2018;78(21):6223-6234.
34. Sinnakannu JR, Lee KL, Cheng S, et al. SRSF1 mediates cytokine-induced impaired imatinib sensitivity in chronic myeloid leukemia. Leukemia. 2020;34(7):1787-1798.
35. Oehler VG, Yeung KY, Choi YE, et al. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood. 2009;114(15):3292- 3298.
36. Zheng C, Li L, Haak M, et al. Gene expres- sion profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia. 2006;20(6): 1028-1034.
37. Branford S, Kim DDH, Apperley JF, et al. Laying the foundation for genomically- based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835-1850.
38. Zhao LJ, Wang YY, Li G, et al. Functional features of RUNX1 mutants in acute trans- formation of chronic myeloid leukemia and their contribution to inducing murine full- blown leukemia. Blood. 2012;119(12):2873- 2882.
39.Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers inte- grin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15(3):294- 304.
40. Balasubramani A, Larjo A, Bassein JA, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 2015;6:7307.
41. Pagan JK, Arnold J, Hanchard KJ, et al. A novel corepressor, BCoR-L1, represses tran- scription through an interaction with CtBP. J Biol Chem. 2007;282(20):15248-15257.
42.Kazenwadel J, Secker GA, Liu YJ, et al. Loss-of-function germline GATA2 muta- tions in patients with MDS/AML or MonoMAC syndrome and primary lym- phedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283-1291.
18.
Res. 2004;10(1 Pt 1):155-165.
de Lavallade H, Finetti P, Carbuccia N, et al. A gene expression signature of primary resistance to imatinib in chronic myeloid leukemia. Leuk Res. 2010;34(2):254-257.
19.Zhang WW, Cortes JE, Yao H, et al. Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resist- ance. J Clin Oncol. 2009;27(22):3642-3649.
20.Kok CH, Yeung DT, Lu L, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3(10):1610-1621.
21.
22.
Marin D, Ibrahim AR, Lucas C, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for pre- dicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30(3): 232-238.
Hughes TP, Saglio G, Kantarjian HM, et al. Early molecular response predicts out- comes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014;123(9):1353-1360.
23.Frank O, Brors B, Fabarius A, et al. Gene expression signature of primary imatinib- resistant chronic myeloid leukemia patients. Leukemia. 2006;20(8):1400-1407.
24. Villuendas R, Steegmann JL, Pollan M, et al. Identification of genes involved in imatinib resistance in CML: a gene-expression pro- filing approach. Leukemia. 2006;20(6): 1047-1054.
25. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with pro- gression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2006;103(8):2794-2799.
26. Lim S, Saw TY, Zhang M, et al. Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A. 2013;110(25):E2298-2307.
27. Crossman LC, Mori M, Hsieh YC, et al. In chronic myeloid leukemia white cells from cytogenetic responders and non-responders to imatinib have very similar gene expres- sion signatures. Haematologica. 2005;90(4): 459-464.
28.Burguillo FJ, Martin J, Barrera I, Bardsley WG. Meta-analysis of microarray data: the case of imatinib resistance in chronic myel- ogenous leukemia. Comput Biol Chem. 2010;34(3):184-192.
29.Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657-667.
30.Lim B, Lin Y, Navin N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell. 2020;37(4):456-470.
31. Warfvinge R, Geironson L, Sommarin MNE, et al. Single-cell molecular analysis defines therapy response and immunophe- notype of stem cell subpopulations in CML. Blood. 2017;129(17):2384-2394.
32. Giustacchini A, Thongjuea S, Barkas N, et al. Single-cell transcriptomics uncovers dis- tinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med.
43.
Zhang SJ, Shi JY, Li JY. GATA-2 L359V mutation is exclusively associated with CML progression but not other hematolog- ical malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leuk Res. 2009;33(8):1141-1143.
44.Pronier E, Almire C, Mokrani H, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcy- tosine disturbs erythroid and granu- lomonocytic differentiation of human hematopoietic progenitors. Blood. 2011; 118(9):2551-2555.
45.Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid trans- formation. Cancer Cell. 2011;20(1):11-24.
46.Mayle A, Yang L, Rodriguez B, et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood. 2015;125(4):629- 638.
47. Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018;10:17.
48. Huang Y-H, Tovy A, Sundaramurthy V, et al. Nearly a third of clonal hematopoiesis-
haematologica | 2022; 107(2)
369