Page 84 - 2022_01-Haematologica-web
P. 84

B.Z. Carter et al.
presses Mcl-1 and induces apoptosis in hematological cancer cells. Clin Cancer Res. 2019;26(4):922-934.
26. Teh TC, Nguyen NY, Moujalled DM, et al. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia. 2018;32(2):303-312.
27. Pan R, Ruvolo V, Mu H, et al. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell. 2017;32(6):748-760.
28. Daver NG, Garcia JS, Jonas BA, et al. Updated results from the venetoclax (Ven) in combination with idasanutlin (Idasa) arm of a phase 1b trial in elderly patients (Pts) with relapsed or refractory (R/R) AML ineligible for cytotoxic chemotherapy. Blood. 2019;134(Suppl 1):S229-229.
29. Moujalled DM, Pomilio G, Ghiurau C, et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre- clinical models of acute myeloid leukemia. Leukemia. 2019;33(4):905-917.
30. Ramsey HE, Fischer MA, Lee T, et al. A novel MCL1 inhibitor combined with vene- toclax rescues venetoclax-resistant acaute myelogenous leukemia. Cancer Discov. 2018;8(12):1566-1581.
31. Konopleva M, Andreeff M. Targeting the leukemia microenvironment. Curr Drug Targets. 2007;8(6):685-701.
32. Carter BZ, Mak PY, Wang X, et al. An ARC- regulated IL1b/Cox-2/PGE2/b-Catenin/ARC circuit controls leukemia-microenvironment interactions and confers drug resistance in AML. Cancer Res. 2019;79(6):1165-1177.
33. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62(13):3603-3608.
34. Carter BZ, Mak PY, Mu H, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355): 355ra117.
35.Carter BZ, Mak PY, Wang X, et al. Focal adhesion kinase as a potential target in AML and MDS. Mol Cancer Ther. 2017;16(6): 1133-1144.
36. Han L, Qiu P, Zeng Z, et al. Single-cell mass cytometry reveals intracellular survival/pro- liferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A. 2015;87(4):346-356.
37. Zhou H, Mak PY, Mu H, et al. Combined inhibition of beta-catenin and Bcr-Abl syner- gistically targets tyrosine kinase inhibitor- resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia. 2017;31(10):2065-2074.
38. Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J. Cytofkit: a bioconduc- tor package for an integrated mass cytome- try data analysis pipeline. PLoS Comput Biol. 2016;12(9):e1005112.
39. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27- 55.
40. Sun Y, Bandi M, Lofton T, et al. Functional genomics reveals synthetic lethality between phosphogluconate dehydrogenase and oxidative phosphorylation. Cell Rep. 2019;26(2):469-482.
41.Gelman SJ, Naser F, Mahieu NG, et al. Consumption of NADPH for 2-HG synthe- sis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress. Cell Rep. 2018;22(2):512-522.
42. Molina JR, Sun Y, Protopopova M, et al. An inhibitor of oxidative phosphorylation
exploits cancer vulnerability. Nat Med.
2018;24(7):1036-1046.
43.Abraham M, Biyder K, Begin M, et al.
Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells. 2007;25(9):2158-2166.
44. Virappane P, Gale R, Hills R, et al. Mutation of the Wilms' tumor 1 gene is a poor prog- nostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2008;26(33): 5429-5435.
45. Hwang AB, Lee SJ. Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging. 2011;3(3):304-310.
46. Mathieu J, Zhang Z, Zhou W, et al. HIF induces human embryonic stem cell mark- ers in cancer cells. Cancer Res. 2011;71(13): 4640-4652.
47. Blombery P, Anderson MA, Gong JN, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9(3):342-353.
48. Chen X, Glytsou C, Zhou H, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9(7):890-909.
49. Nechiporuk T, Kurtz SE, Nikolova O, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9(7):910- 925.
50. Zhao X, Ren Y, Lawlor M, et al. BCL2 ampli- con loss and transcriptional remodeling drives ABT-199 resistance in B cell lym- phoma models. Cancer Cell. 2019;35(5):752- 766.
76
haematologica | 2022; 107(1)


































































































   82   83   84   85   86