Page 267 - 2022_01-Haematologica-web
P. 267

b1-tubulin role in platelet function
carboxypeptidase 5 in neuronal survival and
spermatogenesis. Sci Rep. 2017;7:41428.
11. Vogel P, Hansen G, Fontenot G, Read R. Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnor- mal development of spermatid flagella in
mice. Vet Pathol. 2010;47(4):703-712.
12. Dmitrieff S, Alsina A, Mathur A, Nédélec FJ. Balance of microtubule stiffness and cortical tension determines the size of blood cells with marginal band across species. Proc Natl
Acad Sci U S A. 2017;114(17):4418-4423.
13. Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K. Motor-driven mar- ginal band coiling promotes cell shape change during platelet activation. J Cell Biol.
2014;204(2):177-185.
14. Sadoul K. New explanations for old observa-
tions: marginal band coiling during platelet activation. J Thromb Haemost. 2015;13 (3):333-346.
15. Poulter Natalie S, Thomas SG. Cytoskeletal regulation of platelet formation: coordina- tion of F-actin and microtubules. Int J Biochem Cell Biol. 2015;66:69-74.
16. Machlus KR, Italiano JE. The incredible jour- ney: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6): 785-796.
17. Schwer HD, Lecine P, Tiwari S, Italiano JE, Hartwig JH, Shivdasani RA. A lineage- restricted and divergent beta-tubulin iso- form is essential for the biogenesis, structure and function of blood platelets. Curr Biol. 2001;11(8):579-586.
18. Kunishima S, Kobayashi R, Itoh Tomohiko J, Hamaguchi Mo, Saito H. Mutation of the beta1-tubulin gene associated with congeni- tal macrothrombocytopenia affecting micro- tubule assembly. Blood. 2009;113(2):458- 461.
19. Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation dis- rupting microtubule assembly impairs pro- platelet formation and results in congenital macrothrombocytopenia. Eur J Haematol. 2014;92(4):276-282.
20. Fiore M, Goulas C, Pillois X. A new muta- tion in TUBB1 associated with thrombocy- topenia confirms that C-terminal part of b1- tubulin plays a role in microtubule assembly. Clin Genet. 2017;91(6):924-926.
21. Natarajan K, Gadadhar S, Souphron J, Magiera MM, Janke Carsten. Molecular inter- actions between tubulin tails and glutamy- lases reveal determinants of glutamylation patterns. EMBO Rep. 2017;18(6):1013-1026.
22. Dijk J, Bompard G, Cau J, et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation. BMC Biol. 2018;16(1):116.
23. Feng Q, Shabrani N, Thon JN, et al. Scalable generation of universal platelets from
human induced pluripotent stem cells. Stem
Cell Rep. 2014;3(5):817-831.
24. Waterhouse Andrew, Bertoni Martino,
Bienert Stefan, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
25. Bienert S, Waterhouse A, Beer TAP, et al. The SWISS-MODEL Repository—new fea- tures and functionality. Nucleic Acids Res. 2016;45(D1):D313-D319.
26. Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss- PdbViewer: a historical perspective. Electrophoresis. 2009;30:S162-S173.
27.Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2010;27(3):343-350.
28.Ti SC, Pamula MC, Howes SC, et al. Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus- and minus-ends. Dev Cell. 2016;37(1):72-84.
29. Almazni I, Stapley RJ, Khan AO, Morgan NV. A comprehensive bioinformatic analysis of 126 patients with an inherited platelet dis- order to identify both sequence and copy number genetic variants. Hum Mutat. 2020;41(11):1848-1865.
30. Johnson B, Lowe GC, Futterer J, et al. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with second- ary qualitative function defects. Haematologica. 2016;101(10):1170-1179.
31. Khan AO, Stapley R, Pike JA, et al. Novel gene variants in patients with platelet-based bleeding using combined exome sequencing and RNAseq murine expression data. J Thromb Haemost. 2021;19(1):262-268.
32. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recom- mendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
33. Bender M, Thon JN, Ehrlicher AJ, et al. Microtubule sliding drives proplatelet elon- gation and is dependent on cytoplasmic dynein. Blood. 2015;125(5):860-868.
34.Adam F, Kauskot A, Kurowska M, et al. Kinesin-1 Is a new actor involved in platelet secretion and thrombus stability. Arterioscler Thromb Vasc Biol. 2018;38(5): 1037-1051.
35. Ikegami K, Mukai M, Tsuchida J, Heier RL, Macgregor GR, Setou M. TTLL7 is a mam- malian beta-tubulin polyglutamylase required for growth of MAP2-positive neu- rites. J Biol Chem. 2006;281(41):30707-30716.
36. Sirajuddin M, Rice LM, Vale RD. Regulation
of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 2014;16(4):335-344.
37. O’Hagan R, Silva M, Nguyen Ken CQ, et al. Glutamylation regulates transport, special- izes function, and sculpts the structure of cilia. Curr Biol. 2017;27(22):3430-3441.
38. Wloga D, Dave D, Meagley J, Rogowski K, Jerka-Dziadosz M, Gaertig J. Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryot Cell. 2010;9(1):184-193.
39. Patel R, Richardson Jennifer L, Schulze Harald, et al. Differential roles of micro- tubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106(13):4076-4085.
40. Italiano JE, Lecine P, Shivdasani R A, Hartwig J H. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147(6): 1299-1312.
41. Kremers G, Hazelwood KL, Murphy CS, Davidson MW, Piston DW. Photoconversion in orange and red fluores- cent proteins. Nat Methods. 2009;6(5):355- 358.
42. Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV. CRISPR-Cas9 mediated labelling allows for single molecule imaging and resolution. Sci Rep. 2017;7(1):8450.
43. Khan AO, White CW, Pike JA, et al. Optimised insert design for improved single- molecule imaging and quantification through CRISPR-Cas9 mediated knock-in. Sci Rep. 2019;9(1):14219.
44. Smith CW, Raslan Z, Parfitt L, et al. TREM- like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Adv. 2018;2(16):2072-2078.
45. Pike JA, Simms VA, Smith CW, et al. An adaptable analysis workflow for characteri- zation of platelet spreading and morpholo- gy. Platelets. 2020:1-5.
46.Berthold MR, Cebron N, Dill F, et al. KNIME-the konstanz information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter. 2009;11:26-31.
47. Sommer C, Strahle C, Kothe F, A. Hamptrecht F. ilastik: Interactive Learning and Segmentation Toolkit. In: Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings. 2011;230-233.
48. Khan AO, Maclachlan A, Lowe GC, et al. High-throughput platelet spreading analysis: a tool for the diagnosis of platelet-based bleeding disorders. Haematologica. 2020;105(3):e124-e128.
49.McDonald JH, Dunn KW. Statistical tests for measures of colocalization in biological microscopy. J Microsc. 2013;252(3):295- 302.
haematologica | 2022; 107(1)
259


































































































   265   266   267   268   269