Page 211 - 2021_10-Haematologica-web
P. 211

PIMT and RBC metabolism
References
1. Kaestner L, Minetti G. The potential of ery- throcytes as cellular aging models. Cell Death Differ. 2017;24(9):1475-1477.
2. Whitaker B, Rajbhandary S, Kleinman S, Harris A, Kamani N. Trends in United States blood collection and transfusion: results from the 2013 AABB Blood Collection, Utilization, and Patient Blood Management Survey. Transfusion. 2016;56(9):2173-2183.
3. D’Alessandro A, Kriebardis AG, Rinalducci S, et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205-219.
4.Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic func- tions beyond oxygen transport. Expert Rev Proteomics. 2018;15(11):855-864.
5. Yang H, Zubarev RA. Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis. 2010;31(11):1764-1772.
6. Galletti P, Manna C, Ingrosso D, Iardino P, Zappia V. Hypotheses on the physiological role of enzymatic protein methyl esterifica- tion using human erythrocytes as a model system. Adv Exp Med Biol. 1991;307:149- 160.
7. Galletti P, De Bonis ML, Sorrentino A, et al. Accumulation of altered aspartyl residues in erythrocyte proteins from patients with Down’s syndrome. FEBS J. 2007;274(20): 5263-5277.
8. Ingrosso D, D’angelo S, di Carlo E, et al. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. Eur J Biochem. 2000;267(14):4397-4405.
9. Ingrosso D, Cimmino A, D’Angelo S, et al. Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydroge- nase-deficient erythrocytes: role of oxidative stress. Eur J Biochem. 2002;269(8):2032- 2039.
10. Janson CA, Clarke S. Identification of aspar- tic acid as a site of methylation in human erythrocyte membrane proteins. J Biol Chem. 1980;255(24):11640-11643.
11. McFadden PN, Clarke S. Methylation at D- aspartyl residues in erythrocytes: possible step in the repair of aged membrane pro- teins. Proc Natl Acad Sci U S A. 1982;79(8):2460-2464.
12. O’Connor CM, Clarke S. Methylation of erythrocyte membrane proteins at extracel- lular and intracellular D-aspartyl sites in vitro. Saturation of intracellular sites in vivo. J Biol Chem. 1983;258(13):8485-8492.
13. Desrosiers RR, Fanélus I. Damaged proteins bearing L-isoaspartyl residues and aging: a dynamic equilibrium between generation of isomerized forms and repair by PIMT. Curr Aging Sci. 2011;4(1):8-18.
14. Reisz JA, Nemkov T, Dzieciatkowska M, et al. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion. 2018;58(12):2978-2991.
15. Kim E, Lowenson JD, MacLaren DC, Clarke S, Young SG. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci U S A. 1997;94(12):6132-6137.
16.Howie HL, Hay AM, de Wolski K, et al. Differences in Steap3 expression are a mech- anism of genetic variation of RBC storage and oxidative damage in mice. Blood Adv. 2019;3(15):2272-2285.
17. Kanias T, Sinchar D, Osei-Hwedieh D, et al. Testosterone-dependent sex differences in red blood cell hemolysis in storage, stress, and disease. Transfusion. 2016;56(10):2571- 2583.
18. Desmarets M, Cadwell CM, Peterson KR, Neades R, Zimring JC. Minor histocompati- bility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model. Blood. 2009;114(11):2315-2322.
19. Zimring JC, Smith N, Stowell SR, et al. Strain-specific red blood cell storage, metab- olism, and eicosanoid generation in a mouse model. Transfusion. 2014;54(1):137-148.
20. D’Alessandro A, Nemkov T, Yoshida T, et al. Citrate metabolism in red blood cells stored in additive solution-3. Transfusion. 2017;57(2):325-336.
21. Nemkov T, Reisz JA, Gehrke S, Hansen KC, D’Alessandro A. High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods. Methods Mol Biol. 2019;1978:13-26.
22. Reisz JA, Zheng C, D’Alessandro A, Nemkov T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol Biol. 2019;1978:121-135.
23. Stefanoni D, Shin HKH, Baek JH, et al. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica. 2020;105(8):2174- 2186.
24. D’Alessandro A, Dzieciatkowska M, Nemkov T, Hansen KC. Red blood cell pro- teomics update: is there more to discover? Blood Transfus. 2017;15(2):182-187.
25. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr
Protoc Bioinformatics. 2019;68(1):e86.
26. Yamamoto A, Takagi H, Kitamura D, et al. Deficiency in protein L-isoaspartyl methyl- transferase results in a fatal progressive
epilepsy. J Neurosci. 1998;18(6):2063-2074. 27. Reisz JA, Wither MJ, Dzieciatkowska M, et al. Oxidative modifications of glyceralde- hyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red
blood cells. Blood. 2016;128(12):e32-42.
28. Powers RK, Culp-Hill R, Ludwig MP, et al. Trisomy 21 activates the kynurenine path- way via increased dosage of interferon
receptors. Nat Commun. 2019;10(1):4766. 29. Francis RO, D’Alessandro A, Eisenberger A, et al. Donor glucose-6-phosphate dehydro- genase deficiency decreases blood quality for transfusion. J Clin Invest. 2020;130
(5):2270-2285.
30. Nemkov T, Sun K, Reisz JA, et al. Hypoxia
modulates the purine salvage pathway and decreases red blood cell and supernatant lev- els of hypoxanthine during refrigerated stor- age. Haematologica. 2018;103(2):361-372.
31. D’Alessandro A, Yoshida T, Nestheide S, et al. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion. 2020;60(4):786-798.
32. D’Alessandro A, Fu X, Kanias T, et al. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica. 2021;106(5): 1290-1302.
33. Culp-Hill R, Srinivasan AJ, Gehrke S, et al. Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism. Transfusion. 2018;58(12):2797- 2806.
34. Peltz ED, D’Alessandro A, Moore EE, et al. Pathologic metabolism: an exploratory study of the plasma metabolome of critical injury. J Trauma Acute Care Surg. 2015;78(4):742-751.
35. Culp-Hill R, Zheng C, Reisz JA, et al. Red blood cell metabolism in Down syndrome: hints on metabolic derangements in aging. Blood Adv. 2017;1(27):2776-2780.
36. San-Millán I, Stefanoni D, Martinez JL, et al. Metabolomics of endurance capacity in World Tour professional cyclists. Front Physiol. 2020;11:578.
37. Pallotta V, D’Alessandro A, Rinalducci S, Zolla L. Native protein complexes in the cytoplasm of red blood cells. J Proteome Res. 2013;12(7):3529-3546.
38. Longo V, Marrocco C, Zolla L, Rinalducci S. Label-free quantitation of phosphopeptide changes in erythrocyte membranes: towards molecular mechanisms underlying deforma- bility alterations in stored red blood cells. Haematologica. 2014;99(7):e122-e125.
haematologica | 2021; 106(10)
2739


































































































   209   210   211   212   213