Page 104 - 2021_10-Haematologica-web
P. 104
B. Maurer et al.
al. CDK6 as a key regulator of hematopoiet- ic and leukemic stem cell activation. Blood. 2015;125(1):90-101.
21. Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angio- genesis. Cancer Cell. 2013;24(2):167-181.
22. Uras IZ, Walter GJ, Scheicher R, et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcrip- tional regulation of FLT3 and PIM1 by CDK6. Blood. 2016;127(23):2890-2902.
23.Hester A, Koenig A, Dobler F, et al. Palbociclib in daily clinical use: real world experience of the breast center at the University Hospital Munich. Ann Oncol. 2019;30(Suppl 3):iii58.
24. Sobhani N, D'Angelo A, Pittacolo M, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells. 2019;8(4):321.
25. Schmoellerl J, Barbosa I, Eder T, et al. CDK6 is an essential direct target of NUP98-fusion proteins in acute myeloid leukemia. Blood. 2020;136(4):387-400.
26. Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018;28(11): 911-925.
27. Deng J, Wang ES, Jenkins RW, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216-233.
28. European Medicines Agency E. Ibrance EPAR Product information. 2018 [cited 2020 2020/02/27]; Available from: https://www.ema.europa.eu/en/docu- ments/product-information/ibrance-epar- product-information_en.pdf
29. Chen X, Xu D, Li X, et al. Latest overview of the cyclin-dependent kinases 4/6 inhibitors in breast cancer: the past, the present and the future. J Cancer. 2019;10(26):6608-6617.
30. Hu W, Sung T, Jessen BA, et al. Mechanistic investigation of bone marrow suppression associated with palbociclib and its differen- tiation from cytotoxic chemotherapies. Clin Cancer Res. 2016;22(8):2000-2008.
31. Brand M, Jiang B, Bauer S, et al. Homolog- selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem Biol. 2019;26(2):300-306.
32. De Dominici M, Porazzi P, Xiao Y, et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and inde- pendent effects by CDK6-specific PROTACs. Blood. 2020;135(18):1560-1573.
33. Rana S, Bendjennat M, Kour S, et al. Selective degradation of CDK6 by a palboci- clib based PROTAC. Bioorg Med Chem Lett. 2019;29(11):1375-1379.
34. Yang C, Li Z, Bhatt T, et al. Acquired CDK6 amplification promotes breast cancer resist- ance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2017;36(16):2255-2264.
35. Li Z, Razavi P, Li Q, et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell. 2018;34(6):893-905.
36. Bradley A, Anastassiadis K, Ayadi A, et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome. 2012;23(9-10):580-586.
37. Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269(5229):1427.
38. Anampa J, Haque T, Murakhovskaya I, et al. Macrocytosis and dysplastic anemia is asso- ciated with the cyclin-dependent kinase 4/6 inhibitor palbociclib in metastatic breast cancer. Haematologica. 2018;103(3):e98- e102.
39. Laurenti E, Frelin C, Xie S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16(3):302-313.
40.Wilson A, Laurenti E, Oser G, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135 (6):1118-1129.
41. Frelin C, Herrington R, Janmohamed S, et al. GATA-3 regulates the self-renewal of long- term hematopoietic stem cells. Nat Immunol. 2013;14(10):1037-1044.
42. Essers MAG, Offner S, Blanco-Bose WE, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7140): 904-908.
43. Velasco-Hernandez T, Säwén P, Bryder D, Cammenga J. Potential pitfalls of the Mx1- Cre system: implications for experimental modeling of normal and malignant
hematopoiesis. Stem Cell Rep. 2016;7(1):11-
18.
44. Buechler MB, Teal TH, Elkon KB,
Hamerman JA. Cutting edge: type I IFN drives emergency myelopoiesis and periph- eral myeloid expansion during chronic TLR7 signaling. J Immunol. 2013;190(3):886-891.
45. Reynaud D, Pietras E, Barry-Holson K, et al. IL-6 controls leukemic multipotent progeni- tor cell fate and contributes to chronic myel- ogenous leukemia development. Cancer Cell. 2011;20(5):661-673.
46. Schürch Christian M, Riether C, Ochsenbein Adrian F. Cytotoxic CD8+/+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone mar- row mesenchymal stromal cells. Cell Stem Cell. 2014;14(4):460-472.
47. Kollmann K, Briand C, Bellutti F, et al. The interplay of CDK4 and CDK6 in melanoma. Oncotarget. 2019;10(14):1346-1359.
48. Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhibitor Abemaciclib induces a T cell inflamed tumor microenvi- ronment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 2018;22(11): 2978-2994.
49. Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471- 475.
50. Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoi- etic system elicits multicomponent antitu- mor immunity. Nat Med. 2005;11(12):1314- 1321.
51. Lagarrigue S, Lopez-Mejia IC, Denechaud P- D, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Inves. 2016;126(1):335- 348.
52. Meyle KD, Guldberg P. Genetic risk factors for melanoma. Hum Genet. 2009;126(4): 499-510.
53. Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: update on syndromes and management. Genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol. 2016;74(3): 395-410.
54. Uras IZ, Sexl V, Kollmann K. CDK6 inhibi- tion: a novel approach in AML manage- ment. Int J Mol Sci. 2020;21(7):2528.
2632
haematologica | 2021; 106(10)