Page 200 - 2021_09-Haematologica-web
P. 200
M.A. Lizarralde-Iragorri et al.
2488
haematologica | 2021; 106(9)
Experientia. 1993;49(1):5-15.
15. Colin Y, Le van Kim C, El Nemer W. Red
cell adhesion in human diseases. Curr Opin
Hematol. 2014;21(3):186-192.
16. El Nemer W, Gane P, Colin Y, et al. The
Lutheran blood group glycoproteins, the erythroid receptors for laminin, are adhe- sion molecules. J Biol Chem. 1998; 273(27):16686-16693.
17. Gauthier E, Wautier MP, Nemer WE, et al. Protein kinase a-dependent phosphoryla- tion of lutheran/basal cell adhesion mole- cule glycoprotein regulates cell adhesion to laminin α5. J Biol Chem. 2005; 280(34): 30055-30062.
18. Telen MJ. Sickle cell anemia role of adhe- sion molecules and vascular endothelium in the pathogenesis of sickle cell disease. Hematology Am Soc Hematol Educ Program. 2007;84-90.
19. Udani M, Zen Q, Cottman M, et al. Basal cell adhesion molecule/lutheran protein: the receptor critical for sickle cell adhesion to laminin. J Clin Invest. 1998; 101(11):2550-2558.
20. Zennadi R, Hines PC, De Castro LM, Cartron JP, Parise LV, Telen MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothe- lium via LW-alphavbeta3 interactions. Blood. 2004;104(12):3774-3781.
21.Zennadi R, Moeller BJ, Whalen EJ, et al. Epinephrine-induced activation of LW- mediated sickle cell adhesion and vaso- occlusion in vivo. Blood. 2007;110(7):2708- 2717.
22. Parsons SF, Mallinson G, Holmest CH, et al. The Lutheran blood group glycoprotein, another member of the immunoglobulin superfamily, is widely expressed in human tissues and is developmentally regulated in human liver. Blood. 1995;92(12):5496-500.
23. Rahuel BC, Kim CLV, Mattei MG, Cartron JP, Colin Y. Unique gene encodes spliceo- forms of the B-cell adhesion molecule cell surface glycoprotein of epithelial cancer and of the Lutheran blood group glycopro- tein. Blood. 1996;88(5):1865-1872.
24. De Grandis MD, Cambot M, Wautier M-p, Cassinat B, Chomienne C, Colin Y, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2007;121(4):658-66.
25. An X, Gauthier E, Zhang X, et al. Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin. Blood. 2008; 112(13):5212-5219.
26. Gauthier E, El W, Wautier MP, et al. Role of the interaction between Lu/BCAM and the spectrin-based membrane skeleton in the increased adhesion of hereditary spherocy- tosis red cells to laminin. Br J Haematol. 2009;148(3):456-465.
27.Bartolucci P, Chaar V, Picot J, et al. Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphory- lation. Blood. 2010;116(12):1-4.
28. Hines PC, Zen Q, Burney SN, et al. Novel epinephrine and cyclic AMP-mediated acti- vation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101(8):3281- 3287.
29. McDonald JC, Whitesides GM. Poly (dimethylsiloxane) as a material for fabri- cating microfluidic devices. Acc Chem Res. 2002;35(7):491-499.
30. Schneider CA, Rasband WS, Eliceiri KW, Instrumentation C. NIH image to imageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.
31. Picot J, Ndour PA, Lefevre SD, et al. A bio- mimetic microfluidic chip to study the cir- culation and mechanical retention of red blood cells in the spleen. Am J Hematol. 2015;90(4):339-345.
32.Klei TRL, Back DZD, Asif PJ, et al. Glycophorin-C sialylation regulates Lu/BCAM adhesive capacity during ery- throcyte aging. Blood. 2018;2(1):14-24.
33. Chasis JA, Prenant M, Leung A, Mohandas N. Membrane assembly and remodeling during reticulocyte maturation. Blood. 1989;74(3):1112-1120.
34. Mohandas N, Groner W. Cell membrane and volume changes during red cell devel- opment and aging. Ann N Y Acad Sci. 1989;554:217-224.
35. Alapan Y, Matsuyama Y, Little JA, Gurkan UA. Dynamic deformability of sickle red blood cells in microphysiological flow. Technology (Singap World Sci). 2016; 4(2):71-79.
36. Wandersee NJ, Olson SC, Holzhauer SL, Hoffmann RG, Barker JE, Hillery CA. Increased erythrocyte adhesion in mice and humans with hereditary spherocytosis and hereditary elliptocytosis. Blood. 2004; 103(2):710-717.
37. Shartava A, Monteiro CA, Bencsath FA, et al. A posttranslational modification of beta- actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells. J Cell Biol. 1995; 128(5):805-818.
38. Arashiki N, Kimata N, Manno S, Mohandas N, Takakuwa Y. Membrane peroxidation and methemoglobin formation are both necessary for Band 3 clustering: mechanis- tic insights into human erythrocyte senes- cence. Biochemistry. 2013;52(34):5760- 5769.
39. Mannu F, Arese P, Cappellini MD, et al. Role of hemichrome binding to erythrocyte membrane in the generation of Band-3 alterations in B-Thalassemia intermedia erythtrocytes. Blood. 1995;86(5):2014- 2020.
40. Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological con- ditions. Autoimm Rev. 2008;7(6):457-462.
41. Noomuna P, Risinger M, Zhou S, et al. Inhibition of Band 3 tyrosine phosphoryla- tion: a new mechanism for treatment of sickle cell disease. Br J Haematol. 2020;190 (4):599-609.
42. Hadengue AL, Del-pino M, Simon A, Levenson J. Erythrocyte disaggregation shear stress, sialic acid, and cell aging in humans. Hypertension. 1998;32(2):324- 330.
43. Huang Y-x, Tuo W-w, Wang D, Kang L-l, Chen X-y, Luo M. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling mem- brane sialic acid. J Cell Mol Med. 2016;20 (2):294-301.
44. Shinozuka T. Changes in human red blood cells during aging in vivo. Kelo J Med. 1994; 43(3):155-163.
45. Skutelsky E, Farquhar M. Variations in dis- tribution of Con A receptor sites and anion- ic groups during red blood cell differentia- tion in the rat. J Cell Biol. 1976;71(1):218- 231.
46. Franco RS, Lohmann J, Silberstein EB, Mayfield-pratt G, Palascak M, Nemeth TA. Time-dependent changes in the density and hemoglobin F content of biotin-labeled sickle cells. J Clin Invest. 1998;101(12): 2730-2740.
47. Quinn CT, Smith EP, Arbabi S, et al. Biochemical surrogate markers of hemoly- sis do not correlate with directly measured erythrocyte survival in sickle cell anemia. Am J Hematol. 2016;91(12):1195-1201.
48. Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglo- bin associated with enhanced oxidative reactions. Front Physiol. 2015;5:500.