Page 108 - 2021_09-Haematologica-web
P. 108
I. Veletic et al.
immune check point programmed-death-lig- and 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology. 2018;7(6):e1433521.
15. Jorgensen MA, Holmstrom MO, Martinenaite E, Riley CH, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against Arginase-1 in the chronic myelopro- liferative neoplasms relative to disease stage and type of driver mutation. Oncoimmunology. 2018;7(9):e1468957.
16. Blank CU, Haining WN, Held W, et al. Defining ‘T cell exhaustion’. Nat Rev Immunol. 2019;19(11):665-674.
17. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230): 56-61.
18. Sharpe AH, Pauken KE. The diverse func- tions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153-167.
19. Prestipino A, Emhardt AJ, Aumann K, et al. Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018;10(429):eaam7729.
20. Wang J-C, Chen C, Kundra A, et al. Programmed cell death receptor (PD-1) lig- and (PD-L1) expression in Philadelphia chro- mosome-negative myeloproliferative neo- plasms. Leuk Res. 2019;79:52-59.
21.Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expres- sion, and further induction via JAK2 in nodu- lar sclerosing Hodgkin lymphoma and pri- mary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268-3277.
22.Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25(3): 389-402.
23. Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188-201.
24. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117-1127.
25. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of
myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937-951.
26. Verstovsek S, Mesa RA, Gotlib J, et al. A dou- ble-blind, placebo-controlled trial of ruxoli- tinib for myelofibrosis. N Engl J Med. 2012;366(9):799-807.
27. Verstovsek S, Mesa RA, Gotlib J, et al. Long- term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-con- trolled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55.
28. Cervantes F, Dupriez B, Passamonti F, et al. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol. 2012;30(24):2981-2987.
29. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-330.
30. Boiocchi L, Espinal-Witter R, Geyer JT, et al. Development of monocytosis in patients with primary myelofibrosis indicates an accelerated phase of the disease. Mod Pathol. 2013;26(2):204-212.
31. Cardoso EM, Esgalhado AJ, Patrao L, et al. Distinctive CD8(+) T cell and MHC class I signatures in polycythemia vera patients. Ann Hematol. 2018;97(9):1563-1575.
32. Brutkiewicz RR. Cell signaling pathways that regulate antigen presentation. J Immunol. 2016;197(8):2971-2979.
33. Romano M, Sollazzo D, Trabanelli S, et al. Mutations in JAK2 and Calreticulin genes are associated with specific alterations of the immune system in myelofibrosis. Oncoimmunology. 2017;6(10):e1345402.
34. Le Dieu R, Taussig DC, Ramsay AG, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 2009;114(18):3909-3916.
35. Rey J, Fauriat C, Kochbati E, et al. Kinetics of cytotoxic lymphocytes reconstitution after induction chemotherapy in elderly AML patients reveals progressive recovery of nor- mal phenotypic and functional features in NK cells. Front Immunol. 2017;8:64.
36. Vidriales MB, Orfao A, Lopezberges MC, et al. Lymphoid subsets in acute myeloid leukemias - increased number of cells with NK phenotype and normal T-cell distribu-
tion. Ann Hematol. 1993;67(5):217-222.
37. Schnorfeil FM, Lichtenegger FS, Emmerig K, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J
Hematol Oncol. 2015;8(93):93. 38.O’Donnell JS, Teng MWL, Smyth MJ.
Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151-167.
39. Polverelli N, Palumbo GA, Binotto G, et al. Epidemiology, outcome, and risk factors for infectious complications in myelofibrosis patients receiving ruxolitinib: a multicenter study on 446 patients. Hematol Oncol. 2018;36(3):561-569.
40. Schoenberg K, Rudolph J, Vonnahme M, et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015;75(11):2187-2199.
41. Niedermeier M, Reich B, Gomez MR, et al. CD4(+) T cells control the differentiation of Gr1(+) monocytes into fibrocytes. Proc Natl Acad Sci U S A. 2009;106(42):17892-17897.
42. Verstovsek S, Manshouri T, Pilling D, et al. Role of neoplastic monocyte-derived fibro- cytes in primary myelofibrosis. J Exp Med. 2016;213(9):1723-1740.
43. Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethy- lating agents. Leukemia. 2014;28(6):1280- 1288.
44.Kronig H, Kremmler L, Haller B, et al. Interferon-induced programmed death-lig- and 1 (PD-L1/B7-H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur J Haematol. 2014; 92(3):195-203.
45.Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malig- nancies. Oncogene. 2013;32(21):2601-2613.
46. Yang K, Xu J, Liu QH, Li J, Xi YF. Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/ leukemia. Pathol Res Pract. 2019; 215(2):265- 271.
47. Hohtari H, Bruck O, Blom S, et al. Immune cell constitution in bone marrow microenvi- ronment predicts outcome in adult ALL. Leukemia. 2019;33(7):1570-1582.
2396
haematologica | 2021; 106(9)