Page 207 - 2021_07-Haematologica-web
P. 207
Pim kinase regulates TP receptor signaling
Disclosures
No conflicts of interest to disclose.
Contributions
AJU designed the research, performed experiments, analyzed results and wrote the paper; APB, TS, RSG, NE, CD, AS, NK, PJV, LH, RR, SJ, SM and WC performed experiments and ana- lyzed results; HF and JMG designed the research and wrote the paper.
Acknowledgments
The authors would like to thank Gemma Little, Joanne
Mitchell and Mike Fry, University of Reading, for their help with the work and preparation of this manuscript.
Funding
This work was supported by the British Heart Foundation programme grant RG/15/2/31224 (to JMG), British Heart Foundation project grant PG/2019/34798 (to AJU), National Institutes of Health R01 grants HL126743 (to HF) and AI125741 (to WC), the Centre for Biosciences, Manchester Metropolitan University and Manchester Metropolitan University RKE Internal Funding grant 343846 (to AU)..
References
1. Pogacic V, Bullock AN, Fedorov O, et al. Structural analysis identifies imidazo[1,2- b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res. 2007;67(14):6916-6924.
2. Shah N, Pang B, Yeoh KG, et al. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Eur J Cancer. 2008;44(15):2144-2151.
3. Bachmann M, Moroy T. The serine/threo- nine kinase Pim-1. Int J Biochem Cell Biol. 2005;37(4):726-730.
4. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006;38(3):430-443.
5. Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and disso- ciation from Bcl-XL. BMC Cell Biol. 2006;7:1.
6. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase pro- motes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571(1- 3):43-49.
7. Xie Y, Xu K, Linn DE, et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 2008;283(6):3349-3356.
8. Darby RA, Unsworth A, Knapp S, Kerr ID, Callaghan R. Overcoming ABCG2-mediat- ed drug resistance with imidazo-[1,2-b]- pyridazine-based Pim1 kinase inhibitors. Cancer Chemother Pharmacol. 2015; 76(4):853-864.
9. Xie Y, Burcu M, Linn DE, Qiu Y, Baer MR. Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression. Mol Pharmacol. 2010;78(2):310-318.
10. Mikkers H, Nawijn M, Allen J, et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol. 2004;24(13):6104-6115.
11. An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol. 2013;6:12.
12. Senis YA, Tomlinson MG, Garcia A, et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane pro- teins in human platelets and mouse
megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell Proteomics. 2007;6(3):548-564.
13. Weyrich AS, Zimmerman GA. Evaluating the relevance of the platelet transcriptome. Blood. 2003;102(4):1550-1551.
14.Rowley JW, Oler AJ, Tolley ND, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118(14):e101-111.
15. An N, Lin YW, Mahajan S, et al. Pim1 ser- ine/threonine kinase regulates the number and functions of murine hematopoietic stem cells. Stem Cells. 2013;31(6):1202- 1212.
16. Laird PW, van der Lugt NM, Clarke A, et al. In vivo analysis of Pim-1 deficiency. Nucleic Acids Res. 1993;21(20):4750-4755.
17. Li D, D'Angelo L, Chavez M, Woulfe DS. Arrestin-2 differentially regulates PAR4 and ADP receptor signaling in platelets. J Biol Chem. 2011;286(5):3805-3814.
18.Grundler R, Brault L, Gasser C, et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12- CXCR4-mediated homing and migration. J Exp Med. 2009;206(9):1957-1970.
19.Decker S, Finter J, Forde AJ, et al. PIM kinases are essential for chronic lympho- cytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1). Mol Cancer Ther. 2014;13(5):1231-1245.
20. Watkins NA, Gusnanto A, de Bono B, et al. A HaemAtlas: characterizing gene expres- sion in differentiated human blood cells. Blood. 2009;113(19):e1-9.
21. Simon LM, Edelstein LC, Nagalla S, et al. Human platelet microRNA-mRNA net- works associated with age and gender revealed by integrated plateletomics. Blood. 2014;123(16):e37-45.
22. Lin YW, Beharry ZM, Hill EG, et al. A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lym- phoblastic leukemia/lymphoma. Blood. 2010;115(4):824-833.
23. Yan B, Zemskova M, Holder S, et al. The PIM-2 kinase phosphorylates BAD on ser- ine 112 and reverses BAD-induced cell death. J Biol Chem. 2003;278(46):45358- 45367.
24. Cortes J, Tamura K, DeAngelo DJ, et al. Phase I studies of AZD1208, a proviral inte- gration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer. 2018;118(11):1425-1433.
25. Gong H, Shen B, Flevaris P, et al. G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin "out- side-in" signaling. Science. 2010;
327(5963):340-343.
26. Lumley P, White BP, Humphrey PP.
GR32191, a highly potent and specific thromboxane A2 receptor blocking drug on platelets and vascular and airways smooth muscle in vitro. Br J Pharmacol. 1989;97(3):783-794.
27. Nisar SP, Lordkipanidze M, Jones ML, et al. A novel thromboxane A2 receptor N42S variant results in reduced surface expres- sion and platelet dysfunction. Thromb Haemost. 2014;111(5):923-932.
28. Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 lig- and and thromboxanes. Blood. 2004; 104(5):1361-1368.
29. Walsh TG, Harper MT, Poole AW. SDF- 1alpha is a novel autocrine activator of platelets operating through its receptor CXCR4. Cell Signal. 2015;27(1):37-46.
30. Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggiolini M, Wells TN. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000; 96(13):4046-4054.
31. Keeton EK, McEachern K, Dillman KS, et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 2014;123(6):905-913.
32. Kirschner AN, Wang J, van der Meer R, et al. PIM kinase inhibitor AZD1208 for treat- ment of MYC-driven prostate cancer. J Natl Cancer Inst. 2015;107(2):dju407.
33. Din S, Konstandin MH, Johnson B, et al. Metabolic dysfunction consistent with pre- mature aging results from deletion of Pim kinases. Circ Res. 2014;115(3):376-387.
34. Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib inhibits platelet integrin alphaIIbbeta3 outside-in signaling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol. 2015;35(11):2326-2335
35. Gratacap MP, Martin V, Valera MC, et al. The new tyrosine-kinase inhibitor and anti- cancer drug dasatinib reversibly affects platelet activation in vitro and in vivo. Blood. 2009;114(9):1884-1892.
36. Levade M, Severin S, Gratacap MP, Ysebaert L, Payrastre B. Targeting kinases in cancer therapies: adverse effects on blood platelets. Curr Pharm Des. 2016; 22 (16):2315-2322.
37. Lordkipanidze M, Lowe GC, Kirkby NS, et al. Characterization of multiple platelet activation pathways in patients with bleed- ing as a high-throughput screening option: use of 96-well Optimul assay. Blood.
haematologica | 2021; 106(7)
1977