Page 88 - 2021_06-Haematologica-web
P. 88
H. Mizumaki et al. References
1. Young NS. Aplastic anemia. N Engl J Med. 2018;379(17):1643-1656.
2.Zeng W, Nakao S, Takamatsu H, et al. Characterization of T-cell repertoire of the bone marrow in immune-mediated aplastic anemia: evidence for the involvement of antigen-driven T-cell response in cyclosporine-dependent aplastic anemia. Blood. 1999;93(9):3008-3016.
3. Nakao S, Takami A, Takamatsu H, et al. Isolation of a T-cell clone showing HLA- DRB1*0405-restricted cytotoxicity for hematopoietic cells in a patient with aplastic anemia. Blood. 1997;89(10):3691-3699.
4. Risitano AM, Maciejewski JP, Green S, et al. In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing. Lancet. 2004;364(9431):355-364.
5. Wlodarski MW, Gondek LP, Nearman ZP, et al. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodys- plastic syndrome. Blood. 2006;108(8):2632- 2641.
6. Inaguma Y, Akatsuka Y, Hosokawa K, et al. Induction of HLA-B*40:02-restricted T cells possessing cytotoxic and suppressive func- tions against haematopoietic progenitor cells from a patient with severe aplastic anaemia. Br J Haematol. 2016;172(1):131- 134.
7. Espinoza JL, Elbadry MI, Chonabayashi K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018;2(4):390-400.
8. Maruyama H, Katagiri T, Kashiwase K, et al. Clinical significance and origin of leukocytes that lack HLA-A allele expression in patients with acquired aplastic anemia. Exp Hematol. 2016;44(10):931-939.e3.
9. Zaimoku Y, Takamatsu H, Hosomichi K, et al. Identification of an HLA class I allele closely involved in the autoantigen presen- tation in acquired aplastic anemia. Blood. 2017;129(21):2908-2916.
10. Katagiri T, Sato-Otsubo A, Kashiwase K, et
al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011;118(25):6601-6609.
11. Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35-47.
12. Afable MG 2nd, Wlodarski M, Makishima H, et al. SNP array-based karyotyping: dif- ferences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117(25):6876-6884.
13. Betensky M, Babushok D, Roth JJ, et al. Clonal evolution and clinical significance of copy number neutral loss of heterozygosity of chromosome arm 6p in acquired aplastic anemia. Cancer Genet. 2016;209(1-2):1-10.
14.Babushok DV, Duke JL, Xie HM, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017;1(22):1900-1910.
15.Montes P, Kerick M, Bernal M, et al. Genomic loss of HLA alleles may affect the clinical outcome in low-risk myelodysplas- tic syndrome patients. Oncotarget. 2018;9(97):36929-36944.
16.Imi T, Katagiri T, Hosomichi K, et al. Sustained clonal hematopoiesis by HLA- lacking hematopoietic stem cells without driver mutations in aplastic anemia. Blood Adv. 2018;2(9):1000-1012.
17. Elbadry MI, Mizumaki H, Hosokawa K, et al. Escape hematopoiesis by HLA-B5401- lacking hematopoietic stem progenitor cells in men with acquired aplastic anemia. Haematologica. 2019;104(10):e447-e450.
18. Hosokawa K, Sugimori C, Ishiyama K, et al. Establishment of a flow cytometry assay for detecting paroxysmal nocturnal hemoglo- binuria-type cells specific to patients with bone marrow failure. Ann Hematol. 2018;97(12):2289-2297.
19.MacConaill LE, Burns RT, Nag A, et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross- talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics. 2018;19(1):30.
20. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical sta-
tistics. Bone Marrow Transplant. 2013;48(3):
452-458.
21. Sidney J, Peters B, Frahm N, et al. HLA class
I supertypes: a revised and updated classifi-
cation. BMC Immunol. 2008;9:1. 22.Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3(7):
770-781.
23.Mouw KW, Cleary JM, Reardon B, et al.
Genomic evolution after chemoradiothera- py in anal squamous cell carcinoma. Clin Cancer Res. 2017;23(12):3214-3222.
24. Shukla SA, Rooney MS, Rajasagi M, et al. Comprehensive analysis of cancer-associat- ed somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33(11):1152-1158.
25. Li YY, Chung GT, Lui VW, et al. Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nat Commun. 2017;8:14121.
26. Arends CM, Galan-Sousa J, Hoyer K, et al. Hematopoietic lineage distribution and evo- lutionary dynamics of clonal hematopoiesis. Leukemia. 2018;32(9):1908-1919.
27. Sugimori C, Mochizuki K, Qi Z, et al. Origin and fate of blood cells deficient in glyco- sylphosphatidylinositol-anchored protein among patients with bone marrow failure. Br J Haematol. 2009;147(1):102-112.
28. Dingli D, Traulsen A, Pacheco JM. Compartmental architecture and dynamics of hematopoiesis. PLoS One. 2007;2(4): e345.
29. Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells pre- dicts response to immunosuppressive thera- py and prognosis in patients with aplastic anemia. Blood. 2006;107(4):1308-1314.
30.Kulagin A, Lisukov I, Ivanova M, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol. 2014;164(4):546-554.
31. Narita A, Muramatsu H, Sekiya Y, et al. Paroxysmal nocturnal hemoglobinuria and telomere length predicts response to immunosuppressive therapy in pediatric aplastic anemia. Haematologica. 2015;100 (12):1546-1552.
1590
haematologica | 2021; 106(6)