Page 31 - 2021_06-Haematologica-web
P. 31

Role of the Hsp70 chaperone in erythropoiesis
maturation in erythroid and nonerythroid cells. Proc Natl Acad Sci U S A. 2018;115 (6):E1117-E1126.
70. Kihm AJ, Kong Y, Hong W, et al. An abun- dant erythroid protein that stabilizes free α- haemoglobin. Nature. 2002;417(6890):758.
71. Liu S, Bhattacharya S, Han A, et al. Haem- regulated eIF2α kinase is necessary for adap- tive gene expression in erythroid precursors under the stress of iron deficiency. Br J Haematol. 2008;143(1):129-137.
72. Zhang S, Macias-Garcia A, Ulirsch JC, et al. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. eLife. 2019;8:e46976.
73. Han AP, Yu C, Lu L, et al. Heme-regulated eIF2α kinase (HRI) is required for transla- tional regulation and survival of erythroid precursors in iron deficiency. EMBO J. 2001;20(23):6909-6918.
74. Thulasiraman V, Xu Z, Uma S, Gu Y, Chen JJ, Matts RL. Evidence that Hsc70 negatively modulates the activation of the heme-regu- lated eIF-2α kinase in rabbit reticulocyte lysate. Eur J Biochem. 1998;255(3):552-562.
75. Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha sub- unit of eukaryotic translation initiation fac- tor 2. Mol Cell Biol. 1999;9:5861-5871.
76. Han A-P, Fleming MD, Chen J-J. Heme-reg- ulated eIF2α kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and β-thalassemia. J Clin Invest. 2005;115(6):1562-1570.
77. Lu L, Han A-P, Chen J-J. Translation initia- tion control by heme-regulated eukaryotic initiation factor 2α kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol. 2001;21(23):7971-7980.
78. Suragani RN, Zachariah RS, Velazquez JG, et al. Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22): 5276-5284.
79. Zhang S, Macias-Garcia A, Velazquez J, Paltrinieri E, Kaufman RJ, Chen J-J. HRI coordinates translation by eIF2αP and mTORC1 to mitigate ineffective erythro- poiesis in mice during iron deficiency. Blood. 2018;131(4):450-461.
80. Morimoto R, Fodor E. Cell-specific expres- sion of heat shock proteins in chicken retic- ulocytes and lymphocytes. J Cell Biol. 1984;99(4):1316-1323.
81. Lee GJ, Roseman AM, Saibil HR, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997;16(3):659-671.
82. Nillegoda NB, Wentink AS, Bukau B. Protein disaggregation in multicellular organisms. Trends Biochem Sci. 2018;43(4):285-300.
83. Rampelt H, Kirstein-Miles J, Nillegoda NB, et al. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 2012;31(21):4221-4235.
84. Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaper- one using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem. 2013;288(29):21399-21411.
85. Nillegoda NB, Kirstein J, Szlachcic A, et al. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature. 2015;524(7564):247.
86. Nillegoda NB, Stank A, Malinverni D, et al. Evolution of an intricate J-protein network driving protein disaggregation in eukary- otes. Elife. 2017;6:e24560.
87. Kirstein J, Arnsburg K, Scior A, et al. In vivo properties of the disaggregase function of J- proteins and Hsc70 in Caenorhabditis ele- gans stress and aging. Aging Cell. 2017;16(6):1414-1424.
88. Beere HM, Green DR. Stress management– heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 2001;11(1):6-10.
89. Li C-Y, Lee J-S, Ko Y-G, Kim J-I, Seo J-S. Heat shock protein 70 inhibits apoptosis down- stream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem. 2000;275(33):25665-25671.
90. Bivik C, Rosdahl I, Öllinger K. Hsp70 pro- tects against UVB induced apoptosis by pre- venting release of cathepsins and cytochrome c in human melanocytes. Carcinogenesis. 2007;28(3):537-544.
91. Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem. 2002;277(35):31585-31592.
92. Mohandas N, Gallagher PG. Red cell mem- brane: past, present, and future. Blood. 2008;112(10):3939-3948.
thalassemia: a possible genetic modifier.
Hematology. 2005;10(2):157-161.
108. Khandros E, Thom CS, D'Souza J, Weiss MJ. Integrated protein quality-control pathways regulate free α-globin in murine b-tha-
lassemia. Blood. 2012;119(22):5265-5275. 109. Adewoye AH, Klings ES, Farber HW, et al. Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol. 2005;78(3):240-
242.
110. Sundd P, Gladwin MT, Novelli EM.
Pathophysiology of sickle cell disease. Annu
Rev Pathol Mech. 2019;14:263-292. 111.Elsner L, Flugge PF, Lozano J, et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cyto- toxic effector functions of NK cells. J Cell
Mol Med. 2010;14(4):992-1002.
112.De Maio A, Vazquez D. Extracellular heat
shock proteins: a new location, a new func-
tion. Shock. 2013;40(4):239-246.
113. Multhoff G, Pfister K, Gehrmann M, et al. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress
Chaperon. 2001;6(4):337-344.
114. Biondani A, Turrini F, Carta F, et al. Heat-
shock protein-27, -70 and peroxiredoxin-II show molecular chaperone function in sickle red cells: Evidence from transgenic sickle cell mouse model. Proteomics Clin Appl. 2008;2(5):706-719.
115. Levin C, Koren A, Rebibo-Sabbah A, Koifman N, Brenner B, Aharon A. Extracellular vesicle characteristics in beta- thalassemia as potential biomarkers for spleen functional status and ineffective ery- thropoiesis. Front Physiol. 2018;9:1214.
116. Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049-1059.
117. Horrigan SK, Arbieva ZH, Xie HY, et al. Delineation of a minimal interval and iden- tification of 9 candidates for a tumor sup- pressor gene in malignant myeloid disorders on 5q31. Blood. 2000;95(7):2372-2377.
118. Craven SE, French D, Ye W, de Sauvage F, Rosenthal A. Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome. Blood. 2005;105(9):3528-3534.
119. Frisan E, Vandekerckhove J, de Thonel A, et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syn- dromes. Blood. 2012;119(6):1532-1542.
120. Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7(5):285-295.
121.de Oliveira GA, Rangel LP, Costa DC, Silva JL. Misfolding, aggregation, and disordered segments in c-Abl and p53 in human cancer. Front Oncol. 2015;5:97.
122. Malcovati L, Karimi M, Papaemmanuil E, et al. SF3B1 mutation identifies a distinct sub- set of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233-241.
123. Gallardo M, Barrio S, Fernandez M, et al. Proteomic analysis reveals heat shock pro- tein 70 has a key role in polycythemia Vera. Mol Cancer. 2013;12(1):142.
124. Sevin M, Girodon F, Garrido C, de Thonel A. HSP90 and HSP70: implication in inflamma- tion processes and therapeutic approaches for myeloproliferative neoplasms. Mediators Inflamm. 2015;2015:970242.
125. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667-679.
126. Marubayashi S, Koppikar P, Taldone T, et al. HSP90 is a therapeutic target in JAK2-depen-
93. Pretorius E, du Plooy JN, Bester J. A compre- hensive review on eryptosis. Cell Physiol Biochem. 2016;39(5):1977-2000.
94. Bryk AH, Wiśniewski JR. Quantitative analysis of human red blood cell proteome. J Proteome Res. 2017;16(8):2752-2761.
95. Finka A, Sood V, Quadroni M, De Los Rios P, Goloubinoff P. Quantitative proteomics of heat-treated human cells show an across- the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperon. 2015;20(4):605-620.
96. Finka A, Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperon. 2013;18(5):591-605.
97. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality con- trol. Science. 2016;353(6294):aac4354.
98. Nillegoda NB, Bukau B. Metazoan Hsp70- based protein disaggregases: emergence and mechanisms. Front Mol Biosci. 2015;2(57): eCollection.
99. Shorter J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggrega- tion and reactivation in a cell-free system. PLoS One. 2011;6(10):e26319.
100. Sarikas A, Hartmann T, Pan Z-Q. The cullin protein family. Genome Biol. 2011;12(4): 220. 101. Nillegoda NB, Theodoraki MA, Mandal AK, et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfold- ed cytosolic proteins. Mol Biol Cell.
2010;21(13):2102-2116.
102. Theodoraki MA, Nillegoda NB, Saini J,
Caplan AJ. A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. J Biol Chem. 2012;287(28):23911-23922.
103. Sultana R, Theodoraki MA, Caplan AJ. UBR1 promotes protein kinase quality con- trol and sensitizes cells to Hsp90 inhibition. Exp Cell Res. 2012;318(1):53-60.
104. McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperon. 2003;8(4): 303.
105. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018;391(10116):155- 167.
106.Gringras P, Wonke B, Old J, et al. Effect of alpha thalassaemia trait and enhanced gamma chain production on disease severity in beta thalassaemia major and intermedia. Arch Dis Child. 1994;70(1):30-34.
107. dos Santos CO, Costa FF. AHSP and beta-
haematologica | 2021; 106(6)
1533


































































































   29   30   31   32   33