Page 30 - 2021_06-Haematologica-web
P. 30
Y. Mathangasinghe et al.
ranges and normal values. In: Lewis SM, edi- tor. Dacie and Lewis Practical Haematology. 12 ed. China: Elsevier 2017:2-17.
13. Roux-Dalvai F, Gonzalez de Peredo A, Simo C, et al. Extensive analysis of the cytoplas- mic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Protiomics. 2008;7(11):2254-2269.
14. Goloubinoff P, Sassi AS, Fauvet B, Barducci A, De Los Rios P. Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat Chem Biol. 2018;14(4):388-395.
33. Cyr DM. Swapping nucleotides, tuning Hsp70. Cell. 2008;133(6):945-947.
34. Finka A, Mattoo RU, Goloubinoff P. Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annu Rev Biochem. 2016;85:715-742.
35. De Los Rios P, Barducci A. Hsp70 chaper- ones are non-equilibrium machines that achieve ultra-affinity by energy consump- tion. Elife. 2014;3:e02218.
36.Schrödinger E. What is life? The physical aspect of the living cell. Cambridge University Press; 1944.
37. Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol. 2010;6(12):914-920.
38. Trinklein ND, Chen WC, Kingston RE, Myers RM. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperon. 2004;9(1):21.
39. Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells. 2004;22(6):962-971.
40. Matsumoto A, Takeishi S, Kanie T, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9(3):262-271.
41. Zou P, Yoshihara H, Hosokawa K, et al. p57Kip2 and p27Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9(3):247-261.
42. Tesio M, Trumpp A. Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell. 2011;9(3):187-192.
43. Böcking T, Aguet F, Harrison SC, Kirchhausen T. Single-molecule analysis of a molecular disassemblase reveals the mecha- nism of Hsc70-driven clathrin uncoating. Nat Struct Mol. 2011;18(3):295.
44. Chakraborty A, Mukherjee S, Chattopadhyay R, Roy S, Chakrabarti S. Conformational adaptation in the E. coli sigma 32 protein in response to heat shock. J Phys Chem. 2014;118(18):4793-4802.
45. Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J. Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Cell Biol. 2011;18(2): 150.
46. Zhang J, Socolovsky M, Gross AW, Lodish HF. Role of Ras signaling in erythroid differ- entiation of mouse fetal liver cells: function- al analysis by a flow cytometry–based novel culture system. Blood. 2003;102(12):3938- 3946.
47. Han X, Zhang J, Peng Y, et al. Unexpected role for p19INK4d in posttranscriptional reg- ulation of GATA1 and modulation of human terminal erythropoiesis. Blood. 2017;129(2): 226-237.
48. Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett. 2011;312(2):129-142.
49. Zhang Y, Yang Z, Cao Y, et al. The Hsp40 family chaperone protein DnaJB6 enhances Schlafen1 nuclear localization which is criti- cal for promotion of cell-cycle arrest in T- cells. Biochem J. 2008;413(2):239-250.
50. Watson ED, Mattar P, Schuurmans C, Cross JC. Neural stem cell self-renewal requires the Mrj co-chaperone. Dev Dynam. 2009;238(10):2564-2574.
51. Ludwig LS, Cho H, Wakabayashi A, et al.
52.
53.
54.
Genome-wide association study follow-up identifies cyclin A2 as a regulator of the tran- sition through cytokinesis during terminal erythropoiesis. Am J Hematol. 2015;90(5): 386-391.
Sankaran VG, Ludwig LS, Sicinska E, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 2012;26(18):2075- 2087.
Arai A, Kanda E, Miura O. Rac is activated by erythropoietin or interleukin-3 and is involved in activation of the Erk signaling pathway. Oncogene. 2002;21(17):2641. Song H, Kim W, Kim S-H, Kim K-T. VRK3- mediated nuclear localization of HSP70 pre- vents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity. Sci Rep. 2016;6:38452.
15. Stefani M. Protein misfolding and aggrega- tion: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta. 2004;1739(1):5-25.
16. Voon HPJ, Vadolas J. Controlling α-globin: a review of α-globin expression and its impact on b-thalassemia. Haematologica. 2008;93 (12):1868-1876.
55. Shan Y, Cortopassi G. Mitochondrial Hspa9/Mortalin regulates erythroid differ- entiation via iron-sulfur cluster assembly. Mitochondrion. 2016;26:94-103.
56. Yamamoto H, Momose T, Yatsukawa Y-i, et al. Identification of a novel member of yeast mitochondrial Hsp70-associated motor and chaperone proteins that facilitates protein translocation across the inner membrane. FEBS Lett. 2005;579(2):507-511.
57. Liu T, Krysiak K, Shirai CL, et al. Knockdown of HSPA9 induces TP53-depen- dent apoptosis in human hematopoietic pro- genitor cells. PLoS One. 2017;12(2): e0170470.
58.Chen TH-P, Kambal A, Krysiak K, et al. Knockdown of Hspa9, a del (5q31. 2) gene, results in a decrease in hematopoietic pro- genitors in mice. Blood. 2011;117(5):1530- 1539.
59. Weiss MJ, dos Santos CO. Chaperoning ery- thropoiesis. Blood. 2009;113(10):2136-2144. 60. Zermati Y, Garrido C, Amsellem S, et al.
Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193(2):247-254.
61. Kolbus A, Pilat S, Husak Z, et al. Raf-1 antag- onizes erythroid differentiation by restrain- ing caspase activation. J Exp Med. 2002;196(10):1347-1353.
62. Cande C, Vahsen N, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase- independent after all. Cell Death Differ. 2004;11(6):591.
63. Gurbuxani S, Schmitt E, Cande C, et al. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene. 2003;22(43):6669.
64. Lui JC-K, Kong S-K. Heat shock protein 70 inhibits the nuclear import of apoptosis- inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett. 2007;581(1):109-117.
65. Ribeil JA, Zermati Y, Vandekerckhove J, et al. Hsp70 regulates erythropoiesis by pre- venting caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102-105.
66. Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalas- saemia. Nature. 2014;514(7521):242-246.
67. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood. 1999;94(1):87-96.
68. de Thonel A, Vandekerckhove J, Lanneau D, et al. HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood. 2010;116(1):85-96.
69. Ghosh A, Garee G, Sweeny EA, Nakamura Y, Stuehr DJ. Hsp90 chaperones hemoglobin
17. Bank A. Hemoglobin synthesis in β-tha- lassemia: the properties of the free α-chains. J Clin Invest. 1968;47(4):860-866.
18. Fibach E, Dana M. Oxidative stress in beta- thalassemia. Mol Diagn Ther. 2019;23(2): 245-261.
19. Feng L, Gell DA, Zhou S, et al. Molecular mechanism of AHSP-mediated stabilization of α-hemoglobin. Cell. 2004;119(5):629-640.
20. Mollan TL, Khandros E, Weiss MJ, Olson JS. Kinetics of α-globin binding to α-hemoglo- bin stabilizing protein (AHSP) indicate pref- erential stabilization of hemichrome folding intermediate. J Biol Chem. 2012;287(14): 11338-11350.
21. Weiss MJ, Zhou S, Feng L, et al. Role of alpha hemoglobin stabilizing protein in nor- mal erythropoiesis and β-thalassemia. Ann NY Acad Sci. 2005;1054(1):103-117.
22. Barrett KE, Barman SM, Brooks H, Yuan J. Ganong’s review of medical physiology. 26 ed. New York: McGraw-Hill Medical; 2019:543-551.
23. Drummond DA, Wilke CO. The evolution- ary consequences of erroneous protein syn- thesis. Nat Rev Genet. 2009;10(10):715.
24. Camaschella C, Hoffbrand AV, Hershko C. Iron metabolism, iron deficiency and disor- ders of haem synthesis. Postgrad Haematol. 2015:21-39.
25.Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003;531(1-2):81-92.
26. Yanagitani K, Juszkiewicz S, Hegde RS. UBE2O is a quality control factor for orphans of multiprotein complexes. Science. 2017;357(6350):472-475.
27. Nguyen AT, Prado MA, Schmidt PJ, et al. UBE2O remodels the proteome during ter- minal erythroid differentiation. Science. 2017;357(6350):471.
28. Pilla E, Schneider K, Bertolotti A. Coping with protein quality control failure. Annu Rev Cell Dev Biol. 2017;33:439-465.
29. Mizuno S. Temperature sensitivity of pro- tein synthesis initiation: inactivation of a ribosomal factor by an inhibitor formed at elevated temperatures. Arch Biochem Biophys. 1977;179(1):289-301.
30. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;11:665-680.
31. Kampinga HH, Craig EA. The HSP70 chap- erone machinery: J-proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579-592.
32. Kityk R, Kopp J, Mayer MP. Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol Cell. 2018;69(2):227-237.
1532
haematologica | 2021; 106(6)