Page 69 - 2021_05-Haematologica-web
P. 69
Pro-leukemic effects of P2X7
Funding
GZ was supported by the National Natural Science Foundation of China (grants 81770183, 81970155, 81170511 and 81570153), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS) (grant 2016-
(grant 17JCZDJC35000). LW was supported by CIFMS (grant 2017-I2M-1-015). WF and XY were supported by the Graduate Student Innovation Fund from Peking Union Medical College (grants 2014-0710-1021 and 2013-1001-021, respec- tively). GZ is a recipient of a New Century Excellent Talents in University award (NCET-08-0329).
I2M-2-006), and the Tianjin Natural
References
1. Liu J. The dualistic origin of human tumors. Semin Cancer Biol. 2018;53:1-16.
2. Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett. 2019;205:16-24.
3. Di Virgilio F. Purines, purinergic receptors, and cancer. Cancer Res. 2012;72(21):5441- 5447.
4. Amoroso F, Capece M, Rotondo A, et al. The P2X7 receptor is a key modulator of the PI3K/GSK3beta/VEGF signaling net- work: evidence in experimental neuroblas- toma. Oncogene. 2015;34(41):5240-5251.
5.Amstrup J, Novak I. P2X7 receptor acti- vates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx. Biochem J. 2003;374(Pt 1):51-61.
6. Chong JH, Zheng GG, Zhu XF, et al. Abnormal expression of P2X family recep- tors in Chinese pediatric acute leukemias. Biochem Biophys Res Commun. 2010;391(1):498-504.
7.Zhang XJ, Zheng GG, Ma XT, et al. Expression of P2X7 in human hematopoiet- ic cell lines and leukemia patients. Leuk Res. 2004;28(12):1313-1322.
8. Adinolfi E, Melchiorri L, Falzoni S, et al. P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood. 2002;99(2):706-708.
9. Chong JH, Zheng GG, Ma YY, et al. The hyposensitive N187D P2X7 mutant pro- motes malignant progression in nude mice. J Biol Chem. 2010;285(46):36179-36187.
10.Di Virgilio F, Sarti AC, Falzoni S, et al. Extracellular ATP and P2 purinergic sig- nalling in the tumour microenvironment. Nat Rev Cancer. 2018;18(10):601-618.
11. Feng W, Yang F, Wang R, et al. High level P2X7-mediated signaling impairs function of hematopoietic stem/progenitor cells. Stem Cell Rev. 2016;12(3):305-314.
12. Wang R, Feng W, Wang H, et al. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model. Cancer Lett. 2020;469:151-161.
13. Wang R, Feng W, Yang F, et al. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia. Immunol Cell Biol. 2018;96(2):190-203.
14. Wang L, Feng W, Yang X, et al. Fbxw11 pro- motes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-kappaB and beta- catenin/TCF signaling pathways. Cell Death Dis. 2018;9(4):427.
15. Yang X, Feng W, Wang R, et al. Repolarizing heterogeneous leukemia- associated macrophages with more M1 characteristics eliminates their pro- leukemic effects. Oncoimmunology. 2017;7 (4):e1412910.
16. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
17.Meyer C, Burmeister T, Groger D, et al.
Science Foundation
The MLL recombinome of acute leukemias
in 2017. Leukemia. 2018;32(2):273-284.
18. Stavropoulou V, Peters AHFM, Schwaller J. Aggressive leukemia driven by MLL-AF9.
Mol Cell Oncol . 2018;5(3):e1241854.
19. Tsai CT, So CW. Epigenetic therapies by targeting aberrant histone methylome in AML: molecular mechanisms, current pre- clinical and clinical development.
Oncogene. 2017;36(13):1753-1759. 20.Bach C, Buhl S, Mueller D, et al. Leukemogenic transformation by HOXA cluster genes. Blood. 2010;115(14):2910-
2918.
21. Dard A, Reboulet J, Jia Y, et al. Human
HOX proteins use diverse and context- dependent motifs to interact with TALE class cofactors. Cell Rep. 2018;22(11):3058- 3071.
22. Collins CT, Hess JL. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene. 2016;35(9): 1090-1098.
23. Schotte D, Lange-Turenhout EA, Stumpel DJ, et al. Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica. 2010;95(10):1675-1682.
24. Mamo A, Krosl J, Kroon E, et al. Molecular dissection of Meis1 reveals 2 domains required for leukemia induction and a key role for Hoxa gene activation. Blood. 2006;108(2):622-629.
25. Li Z, Chen P, Su R, et al. PBX3 and MEIS1 cooperate in hematopoietic cells to drive acute myeloid leukemias characterized by a core transcriptome of the MLL-rearranged disease. Cancer Res. 2016;76(3):619-629.
26.Lavau C, Szilvassy SJ, Slany R, et al. Immortalization and leukemic transforma- tion of a myelomonocytic precursor by retrovirally transduced HRX-ENL. Embo J. 1997;16(14):4226-4237.
27. Di Virgilio F, Schmalzing G, Markwardt F. The elusive P2X7 macropore. Trends Cell Biol. 2018;28(5):392-404.
28. McCarthy AE, Yoshioka C, Mansoor SE. Full-length P2X7 structures reveal how palmitoylation prevents channel desensiti- zation. Cell. 2019;179(3):659-670.
29. Kopp R, Krautloher A, Ramirez-Fernandez A, et al. P2X7 interactions and signaling - making head or tail of it. Front Mol Neurosci. 2019;12:183.
30. Locovei S, Scemes E, Qiu F, et al. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 2007;581(3):483-488.
31. Bian S, Sun X, Bai A, et al. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR sig- naling pathways to mediate tumor cell death. Plos One. 2013;8(4):e60184.
32. Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour pro- gression. Purinergic Signal. 2018;14(1):1- 18.
33. Yin S, Gambe RG, Sun J, et al. A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of
Sf3b1 mutation and Atm deletion. Cancer
Cell. 2019;35(2):283-296.
34. Laurent A, Bihan R, Omilli F, et al. PBX pro-
teins: much more than Hox cofactors. Int J
Dev Biol. 2008;52(1):9-20.
35. Li Z, Zhang Z, Li Y, et al. PBX3 is an impor-
tant cofactor of HOXA9 in leukemogene-
sis. Blood. 2013;121(8):1422-1431.
36. Fujita S, Honma D, Adachi N, et al. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid
leukemia. Leukemia. 2018;32(4):855-864. 37. Guo H, Chu Y, Wang L, et al. PBX3 is essen- tial for leukemia stem cell maintenance in MLL-rearranged leukemia. Int J Cancer.
2017;141(2):324-335.
38. Han H, Du Y, Zhao W, et al. PBX3 is target-
39.
ed by multiple miRNAs and is essential for liver tumour-initiating cells. Nat Commun. 2015;6:8271.
Lamprecht S, Kaller M, Schmidt EM, et al. PBX3 is part of an EMT regulatory network and indicates poor outcome in colorectal cancer. Clin Cancer Res. 2018;24(8):1974- 1986.
40. Zhang F, Liu X, Chen C, et al. CD244 main- tains the proliferation ability of leukemia initiating cells through SHP-2/p27(kip1) sig- naling. Haematologica. 2017;102(4):707- 718.
41. Alharbi RA, Pettengell R, Pandha HS, et al. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 2013;27(5):1000-1008.
42. Bhatlekar S, Fields JZ, Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018;2018:3569493.
43.Pan MM, Zhang QY, Wang YY, et al. Human NUP98-IQCG fusion protein induces acute myelomonocytic leukemia in mice by dysregulating the Hox/Pbx3 path- way. Leukemia. 2016;30(7):1590-1593.
44. Handschuh L. Not only mutations matter: molecular picture of acute myeloid leukemia emerging from transcriptome studies. J Oncol. 2019;2019:7239206.
45. XuX,BaoZ,LiuY,etal. PBX3/MEK/ERK1/2/LIN28/let-7b positive feedback loop enhances mesenchymal phe- notype to promote glioblastoma migration and invasion. J Exp Clin Cancer Res. 2018;37(1):158.
46. Wang S, Li C, Wang W, et al. PBX3 pro- motes gastric cancer invasion and metasta- sis by inducing epithelial-mesenchymal transition. Oncol Lett. 2016;12(5):3485- 3491.
47. Morrone FB, Gehring MP, Nicoletti NF. Calcium channels and associated receptors in malignant brain tumor therapy. Mol Pharmacol. 2016;90(3):403-409.
48.Foradori CD, Weiser MJ, Handa RJ. Non- genomic actions of androgens. Front Neuroendocrinol. 2008;29(2):169-181.
49. Daftary GS, Taylor HS. Endocrine regula- tion of HOX genes. Endocr Rev. 2006;27(4):331-355.
50. Holbert MA, Marmorstein R. Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol. 2005;15(6):673-680.
haematologica | 2021; 106(5)
1289