Page 91 - 2021_04-Haematologica-web
P. 91
Asxl1 lesions collaborate with CEBPA-p30 in AML
quences in the context of CEBPA mutant AML and that they therefore provide more than a fertile ground for AML development.
To summarize, we have generated a novel ASXL1G643W mouse model mimicking the most commonly observed ASXL1 lesion mutation in human MDS and AML patients. Consistent with the co-occurrence of CEBPA and ASXL1 lesions in AML, the ASXL1G643W variant accelerates AML development in the context of CEBPA mutant AML. Finally, the observed resistance towards chemotherapy conferred by the ASXL1G643W variant provides us with an experimental handle for future experiments aimed at its reversal.
Disclosures
No conflicts of interest to disclose
Contributions
TD, MBS, AMH and ASW carried out the experiments; TD,
AW, AK, SP and BTP analyzed data; TDA and BP drafted the manuscript which was proofread by all authors; BTP directed the research.
Acknowledgments
We thank Javier Martín Gonzalez and the Transgenic Core Facility for the generation of the mutant strain.
Funding
This work was supported by a grant from the Danish Cancer Society (to Teresa D’Altri) and through a center grant from the Novo Nordisk Foundation (Novo Nordisk Foundation Center for Stem Cell Biology, DanStem; Grant Number NNF17CC0027852). The present work is also part of the Danish Research Center for Precision Medicine in Blood Cancers funded by the Danish Cancer Society grant no. R223-A13071 and Greater Copenhagen Health Science Partners.
References
1. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788-800.
2. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496-2506.
3. Jaiswal S, Fontanillas P, Flannick J, et al. Age- related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014; 371(26):2488-2498.
4. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487.
5. Abdel-Wahab O, Adli M, LaFave LM, et al. ASXL1 mutations promote myeloid trans- formation through loss of PRC2-mediated gene repression. Cancer Cell. 2012; 22(2):180-193.
6. Inoue D, Matsumoto M, Nagase R, et al. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol. 2016;44(3):172-176.1.
7.Dey A, Seshasayee D, Noubade R, et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 2012; 337(6101):1541-1546.
8. Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243-247.
9. Abdel-Wahab O, Dey A. The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia. 2013;27(1):10- 15.
10. Abdel-Wahab O, Gao J, Adli M, et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 2013;210(12):2641-2659.
11. Fisher CL, Pineault N, Brookes C, et al. Loss- of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood. 2010;115(1):38-46.
12. Wang J, Li Z, He Y, et al. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood. 2014;123(4):541-553.
13. Asada S, Fujino T, Goyama S, Kitamura T.
The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511-2523.
14. Asada S, Goyama S, Inoue D, et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun. 2018;9(1):2733.
15. Balasubramani A, Larjo A, Bassein JA, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun. 2015; 6:7307.
16. Hsu YC, Chiu YC, Lin CC, et al. The distinct biological implications of Asxl1 mutation and its roles in leukemogenesis revealed by a knock-in mouse model. J Hematol Oncol. 2017;10(1):139.
17.Nagase R, Inoue D, Pastore A, et al. Expression of mutant Asxl1 perturbs hematopoiesis and promotes susceptibility to leukemic transformation. J Exp Med. 2018;215(6):1729-1747.
18.Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding pro- tein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet. 2001;27(3):263-270. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
20. Ohlsson E, Schuster MB, Hasemann M, Porse BT. The multifaceted functions of C/EBPalpha in normal and malignant haematopoiesis. Leukemia. 2016;30(4):767- 775.
21. Kirstetter P, Schuster MB, Bereshchenko O, et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expres- sion signature of committed myeloid leukemia-initiating cells. Cancer Cell. 2008;13(4):299-310.
22. Jakobsen JS, Laursen LG, Schuster MB, et al. Mutant CEBPA directly drives the expres- sion of the targetable tumor-promoting fac- tor CD73 in AML. Sci Adv. 2019; 5(7):eaaw4304.
23. Rose D, Haferlach T, Schnittger S, Perglerova K, Kern W, Haferlach C. Subtype- specific patterns of molecular mutations in acute myeloid leukemia. Leukemia. 2017; 31(1):11-17.
24. Su L, Tan Y, Lin H, et al. Mutational spec- trum of acute myeloid leukemia patients with double CEBPA mutations based on
25.
next-generation sequencing and its prognos- tic significance. Oncotarget. 2018; 9(38):24970-24979.
Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with addition- al sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086-4094.
19.
26. Schuster MB, Frank A-K, Bagger FO, Rapin N, Vikesaa J, Porse BT. Lack of the p42 form of C/EBPα leads to spontaneous immortal- ization and lineage infidelity of committed myeloid progenitors. Exp Hematol. 2013; 41(10):882-893.e16.
27. Li Z, Zhang P, Yan A, et al. ASXL1 interacts with the cohesin complex to maintain chro- matid separation and gene expression for normal hematopoiesis. Sci Adv. 2017;3(1):e1601602.
28. Chapard C, Hohl D, Huber M. The role of the TRAF-interacting protein in proliferation and differentiation. Exp Dermatol. 2012; 21(5):321-326.
29. Chapard C, Meraldi P, Gleich T, Bachmann D, Hohl D, Huber M. TRAIP is a regulator of the spindle assembly checkpoint. J Cell Sci. 2014;127(Pt 24):5149-5156.
30. Feng W, Guo Y, Huang J, Deng Y, Zang J, Huen MS. TRAIP regulates replication fork recovery and progression via PCNA. Cell Discov. 2016;2:16016.
31. Hoffmann S, Smedegaard S, Nakamura K, et al. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replica- tion stress. J Cell Biol. 2016;212(1):63-75.
32. Wu RA, Semlow DR, Kamimae-Lanning AN, et al. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature. 2019;567(7747):267-272.
33. Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82-91.
34. Paschka P, Schlenk RF, Gaidzik VI, et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015; 100(3):324-330.
35. Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognos- tic value. Haematologica. 2012;97(3):388- 392.
haematologica | 2021; 106(4)
1007