Page 61 - 2021_04-Haematologica-web
P. 61
Combining ibrutinib and checkpoint blockade in CLL
of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013; 121(9):1612-1621.
8. Hanna BS, Roessner PM, Yazdanparast H, et al. Control of chronic lymphocytic leukemia development by clonally-expand- ed CD8+ T cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia. 2019;33(3):625-637.
9. McClanahan F, Hanna B, Miller S, et al. PD- L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203-211.
10. Wierz M, Pierson S, Guyonnet L, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131(14):1617-1621.
11.Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419-3427.
12. Maharaj K, Sahakian E, Pinilla-Ibarz J. Emerging role of BCR signaling inhibitors in immunomodulation of chronic lympho- cytic leukemia. Blood Adv. 2017;1(21):1867-1875.
13. Kondo K, Shaim H, Thompson PA, et al. Ibrutinib modulates the immunosuppres- sive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD- 1/PD-L1 pathway. Leukemia. 2018;32(4):960-970.
14. Gunderson AJ, Kaneda MM, Tsujikawa T, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas can- cer. Cancer Discov. 2016;6(3):270-285.
15. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539-2549.
16. Kohrt HE, Sagiv-Barfi I, Rafiq S, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014;123(12):1957-1960.
17.Ng PP, Lu DK, Sukbuntherng J, et al. Ibrutinib enhances the activity of anti- CD20 antibodies in an MCL mouse model: effect of drug at clinically relevant concen- trations on ADCC and ADCP. Blood. 2015; 126(23):3998-3998.
18. Podhorecka M, Goracy A, Szymczyk A, et al. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number. Oncotarget. 2017;8(21):34661-34669.
19. Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest. 2017;127(8):3052-3064.
20.Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host dis- ease after failure of prior therapy. Blood. 2017;130(21):2243-2250.
21. Sagiv-Barfi I, Kohrt HE, Czerwinski DK, et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibruti- nib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A. 2015;112(9):E966-972.
22. Niemann CU, Herman SEM, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor–microenvironment inter- actions by ibrutinib - findings from an investigator-initiated Phase II study. Clin Cancer Res. 2016;22(7):1572-1582.
23. Bichi R, Shinton SA, Martin ES, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002;99(10):6955-6960.
24. Moran AE, Holzapfel KL, Xing Y, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011;208(6):1279-1289.
25. Hanna BS, McClanahan F, Yazdanparast H, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30(3):570-579.
26. Chang BY, Huang MM, Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI- 32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011;13(4):R115.
27. Haderk F, Schulz R, Iskar M, et al. Tumor- derived exosomes modulate PD-L1 expres- sion in monocytes. Sci Immunol. 2017; 2(13):eaah5509.
28. Quah BJ, Warren HS, Parish CR. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluo- rescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2007; 2(9):2049-2056.
29.Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182-1189.
30. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differ- entiation. Nat Rev Immunol. 2012; 12(11):749-761.
31. Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory receptors beyond T cell exhaustion. Front Immunol. 2015; 6:310.
32. Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differenti- ated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240-252.
33. Li C-R, Berg LJ. Cutting Edge: Itk is not essential for CD28 signaling in naive T cells. J Immunol. 2005;174(8):4475-4479.
34. Kamphorst AO, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1- targeted therapies is CD28-dependent. Science. 2017;355(6332):1423-1427.
35. Hui E, Cheung J, Zhu J, et al. T cell costim- ulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science.
2017;355(6332):1428-1433.
36. Dahan R, Sega E, Engelhardt J, et al. FcγRs
modulate the anti-tumor activity of anti- bodies targeting the PD-1/PD-L1 axis. Cancer Cell. 2015;28(3):285-295.
37. Bunnell SC, Diehn M, Yaffe MB, et al. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem. 2000;275(3):2219- 2230.
38. Kapnick SM, Stinchcombe JC, Griffiths GM, Schwartzberg PL. Inducible T cell kinase regulates the acquisition of cytolytic capacity and degranulation in CD8+ CTLs. J Immunol. 2017;198(7):2699-2711.
39. Lee-Vergés E, Hanna BS, Yazdanparast H, et al. Selective BTK inhibition improves bendamustine therapy response and nor- malizes immune effector functions in chronic lymphocytic leukemia. Int J Cancer. 2019;144(11):2762-2773.
40. Yin Q, Sivina M, Robins H, et al. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia. J Immunol. 2017;198(4):1740- 1747.
41. Bachireddy P, Wu CJ. Arresting the inflam- matory drive of chronic lymphocytic leukemia with ibrutinib. Clin Cancer Res. 2016;22(7):1547-1549.
42.Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen recep- tor T-cell engraftment and efficacy in leukemia. Blood. 2016;127(9):1117-1127. Atherly LO, Brehm MA, Welsh RM, Berg LJ. Tec kinases Itk and Rlk are required for CD8+ T cell responses to virus infection independent of their role in CD4+ T cell help. J Immunol. 2006;176(3):1571-1581. Kipps TJ, Stevenson FK, Wu CJ, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:16096.
45. Tillman BF, Pauff JM, Satyanarayana G, Talbott M, Warner JL. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies. Eur J Haematol. 2018;100(4):325-334.
46. Sharman JP, Banerji V, Fogliatto LM, et al. ELEVATE TN: Phase 3 study of acalabruti- nib combined with obinutuzumab (O) or alone vs O plus chlorambucil (Clb) in patients (Pts) with treatment-naive chronic lymphocytic leukemia (CLL). Blood. 2019;134(Suppl 1):31.
47. Byrd JC, Wierda WG, Schuh A, et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lympho- cytic leukemia: updated phase 2 results. Blood. 2020;135(15):1204-1213.
48.Ryan CE, Sahaf B, Logan AC, et al. Ibrutinib efficacy and tolerability in patients with relapsed chronic lymphocytic leukemia following allogeneic HCT. Blood. 2016;128(25):2899-2908.
49.Chang C-H, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer pro- gression. Cell. 2015;162(6):1229-1241.
43.
44.
haematologica | 2021; 106(4)
977