Page 212 - 2021_04-Haematologica-web
P. 212

J. Garcia-Reyero et al.
marks of plasmablastic lymphoma.
Oncoimmunology. 2018;7(10):e1486950.
8. Laurent C, Fabiani B, Do C, et al. Immune- checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lym- phoma: a clinical and pathological study in 82 patients. Haematologica. 2016;101(8):
976-984.
9. Schmelz M, Montes-Moreno S, Piris M,
Wilkinson ST, Rimsza LM. Lack and/or aberrant localization of major histocompat- ibility class II (MHCII) protein in plas- mablastic lymphoma. Haematologica. 2012;97(10):1614-1616.
10.Valera A, Balagué O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lym- phomas. Am J Surg Pathol. 2010;34(11): 1686-1694.
11. Taddesse-Heath L, Meloni-Ehrig A, Scheerle J, Kelly JC, Jaffe ES. Plasmablastic lymphoma with MYC translocation: evi- dence for a common pathway in the gener- ation of plasmablastic features. Mod Pathol. 2010;23(7):991-999.
12. Montes-Moreno S, Martinez-Magunacelaya N, Zecchini-Barrese T, et al. Plasmablastic lymphoma phenotype is determined by genetic alterations in MYC and PRDM1. Mod Pathol. 2017;30(1):85-94.
13.Munevver C, Rong HR, Chineke I, et al. Genetic analysis of plasmablastic lym- phomas in HIV (+) patients reveals novel driver regulators of the noncanonical NF-κB pathway. Blood. 2018;132(Suppl 1):1565.
14. Swerdlow SH, Campo E, Harris NL, et al. (Editors). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised fourth edition. IARC. Lyon 2017.
15. Montes-Moreno S, Martinez-Magunacelaya N, Zecchini-Barrese T, et al. Plasmablastic lymphoma phenotype is determined by genetic alterations in MYC and PRDM1. Mod Pathol. 2017;30(1):85-94.
16. Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-onco- genes in B-cell diffuse large-cell lym-
phomas. Nature. 2001;412(6844):341-346. 17. Loghavi S, Alayed K, Aladily TN, et al. Stage, age, and EBV status impact out- comes of plasmablastic lymphoma patients: a clinicopathologic analysis of 61
patients. J Hematol Oncol. 2015;8:65.
18. Sarosiek KA, Malumbres R, Nechushtan H, Gentles AJ, Avisar E, Lossos IS. Novel IL-21 signaling pathway up-regulates c-Myc and induces apoptosis of diffuse large B-cell
vant pathways and potential therapeutic
targets. Leukemia. 2018;32(3):675-684.
27. Wang K, Zhang Q, Li D, et al. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin Cancer Res. 2015;21(6):
1487-1496.
28. Sutton LA, Ljungström V, Mansouri L, et al.
Targeted next-generation sequencing in chronic lymphocytic leukemia: a high- throughput yet tailored approach will facil- itate implementation in a clinical setting. Haematologica. 2015;100(3):370-376.
29. Mo JS, Ann EJ, Yoon JH, et al. Serum- and glu- cocorticoid-inducible kinase 1 (SGK1) con- trols Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin lig- ase. J Cell Sci. 2011;124(Pt 1):100-112.
30.Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471 (7339):467-472.
31.Bohn OL, Hsu K, Hyman DM, Pignataro DS, Giralt S, Teruya-Feldstein J. BRAF V600E mutation and clonal evolution in a patient with relapsed refractory myeloma with plasmablastic differentiation. Clin Lymphoma Myeloma Leuk. 2014;14(2): e65-68.
32.Andrulis M, Lehners N, Capper D, et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 2013;3 (8):862-869.
33. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus- associated malignancies. Clin Cancer Res. 2013;19(13):3462-3473.
34.Veloza L, Teixido C, Castrejon N, et al. Clinicopathological evaluation of the pro- grammed cell death 1 (PD1)/programmed cell death-ligand 1 (PD-L1) axis in post- transplant lymphoproliferative disorders: association with Epstein-Barr virus, PD-L1 copy number alterations, and outcome. Histopathology. 2019;75(6):799-812.
19.
20.
lymphomas. Blood. 2010;115(3):570-580. Ohgami RS, Ma L, Monabati A, Zehnder JL, Arber DA. STAT3 mutations are present in aggressive B-cell lymphomas including a subset of diffuse large B-cell lymphomas with CD30 expression. Haematologica. 2014;99(7):e105-107.
Valera A, Colomo L, Martinez A, et al. ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol. 2013;26(10):1329-1337.
21.Tabanelli V, Corsini C, Fiori S, et al. Recurrent PDL1 expression and PDL1 (CD274) copy number alterations in breast implant-associated anaplastic large cell lymphomas. Hum Pathol. 2019;90:60-69.
22.Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470 (7332):115-119.
23. Chapuy B, Roemer MG, Stewart C, et al. Targetable genetic features of primary tes- ticular and primary central nervous system lymphomas. Blood. 2016;127(7):869-881.
24. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012; 367(9):826-833.
25. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463 (7277):88-92.
26.Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new rele-
1128
haematologica | 2021; 106(4)


































































































   210   211   212   213   214