Page 161 - 2021_04-Haematologica-web
P. 161
SYK inhibition for infant ALL
outcome of 85 adults with acute lym- phoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98(6):945-952.
7. Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lym- phoblastic leukemia, regardless of present- ing age. Blood. 1996;87(7):2870-2877.
8. Winters AC, Bernt KM. MLL-rearranged leukemias-an update on science and clinical approaches. Front Pediatr. 2017;5:4.
9. Brown P. Treatment of infant leukemias: challenge and promise. Hematology Am Soc Hematol Educ Program. 2013; 2013:596-600.
10. Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370(9583):240-250.
11. Driessen EMC, de Lorenzo P, Campbell M, et al. Outcome of relapsed infant acute lymphoblastic leukemia treated on the interfant-99 protocol. Leukemia. 2017; 31(12):2854.
12. Brown P, Pieters R, Biondi A. How I treat infant leukemia. Blood. 2019;133(3):205- 214.
13. Vrooman LM, Blonquist TM, Harris MH, et al. Refining risk classification in childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium Protocol 05-001. Blood Advances. 2018;2(12):1449-1458.
14. Lafage-Pochitaloff M, Baranger L, Hunault M, et al. Impact of cytogenetic abnormali- ties in adults with Ph-negative B-cell pre- cursor acute lymphoblastic leukemia. Blood. 2017;130(16):1832-1844.
15. Iacobucci I, Li Y, Roberts KG, et al. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell. 2016;29(2):186-200.
16. Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal transloca- tions in acute leukemias. Cell. 1992;71(4):691-700.
17. Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71(4):701-708.
18. Zangrando A, Dell'Orto MC, te Kronnie G, Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specif- ic signatures. BMC Med Genomics. 2009;2(1):36.
19. de Boer J, Walf-Vorderwulbecke V, Williams O. In focus: MLL-rearranged leukemia. Leukemia. 2013;27(6):1224-1228.
20. Slany RK. MLL fusion proteins and tran- scriptional control. Biochim Biophys Acta Gene Regul Mech. 2020;1863(3):194503.
21. Lin S, Luo RT, Ptasinska A, et al. Instructive role of MLL-fusion proteins revealed by a model of t(4;11) pro-B acute Lymphoblastic Leukemia. Cancer Cell. 2016;30(5):737-749.
22. Krivtsov AV, Armstrong SA. MLL transloca- tions, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823-833.
23.Meyer C, Burmeister T, Groger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273-284.
24. Andersson AK, Ma J, Wang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic
leukemias. Nat Genet. 2015;47(4):330-337. 25.Mohr S, Doebele C, Comoglio F, et al. Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia.
Cancer Cell. 2017;31(4):549-562.e11.
26. Perova T, Grandal I, Nutter LM, et al. Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk pre- cursor B cell acute lymphoblastic leukemia.
Sci Transl Med. 2014;6(236):236ra62.
27. Mócsai A, Ruland J, Tybulewicz VLJ. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev
Immunol. 2010;10:387.
28. Efremov DG, Laurenti L. The Syk kinase as
a therapeutic target in leukemia and lym- phoma. Expert Opin Investig Drugs. 2011;20(5):623-636.
29.Sharman J, Di Paolo J. Targeting B-cell receptor signaling kinases in chronic lym- phocytic leukemia: the promise of entospletinib. Ther Adv Hematol. 2016;7(3):157-170.
30. Kohrer S, Havranek O, Seyfried F, et al. Pre- BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia. 2016;30(6):1246-1254.
31.Loftus JP, Yahiaoui A, Shen F, et al. Enhanced efficacy of the SYK inhibitor entospletinib and vincristine in KMT2A- rearranged acute lymphoblastic leukemia. EHA Annual Congress. 2018:abstract PF164.
32. Currie KS, Kropf JE, Lee T, et al. Discovery of GS-9973, a selective and orally effica- cious inhibitor of spleen tyrosine kinase. J Med Chem. 2014;57(9):3856-3873.
33. Walker AR, Byrd JC, Bhatnagar B, et al. Results of a phase 1b/2 study of entosple- tinib (GS-9973) monotherapy and in com- bination with induction chemotherapy in newly diagnosed patients with acute myeloid leukemia. EHA Annual Congress. 2018:abstract S118.
34.Salzer WL, Jones TL, Devidas M, et al. Decreased induction morbidity and mortal- ity following modification to induction therapy in infants with acute lymphoblas- tic leukemia enrolled on AALL0631: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2015; 62(3):414-418.
35. Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lym- phoblastic leukemia. Blood. 2012; 120(17):3510-3518.
36. Maude SL, Dolai S, Delgado-Martin C, et al. Efficacy of JAK/STAT pathway inhibi- tion in murine xenograft models of early T- cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759-1767.
37. Tasian SK, Teachey DT, Li Y, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177-187.
38. Tasian SK, Hurtz C, Wertheim GB, et al. High incidence of Philadelphia chromo- some-like acute lymphoblastic leukemia in older adults with B-ALL. Leukemia. 2017;31(4):981-984.
39.Ding YY, Stern JW, Jubelirer TF, et al. Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure. Haematologica.
2018:103(9):e427-e431.
40.Irving J, Matheson E, Minto L, et al. Ras
pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124(23):3420-3430.
41. Walker AR, Byrd JC, Blachly JS, et al. Entospletinib in combination with induc- tion chemotherapy in previously untreated acute myeloid leukemia: response and pre- dictive significance of HOXA9 and MEIS1 expression. Clin Cancer Res. 2020; 26(22):5852-5859.
42. Kohrer S, Havranek O, Seyfried F, et al. Pre- BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia. 2016;30(6):1246-1254.
43.van der Veer A, van der Velden VHJ, Willemse ME, et al. Interference with pre- B-cell receptor signaling offers a therapeutic option for TCF3-rearranged childhood acute lymphoblastic leukemia. Blood Cancer J. 2014;4(2):e181.
44.Hurtz C, Tasian SK, Wertheim GB, et al. Redundant JAK, SRC and PI3 kinase signal- ing pathways regulate cell survival in human Ph-like ALL cell lines and primary cells. Blood. 2017;130(Suppl 1):717.
45.Hurtz C, Wertheim GB, Loftus JP, et al. Oncogene-independent adaptation of pre-B cell receptor signaling confers drug resist- ance and signaling plasticity in Ph-like ALL. Blood. 2019;134(S1):747.
46. Matheson EC, Thomas H, Case M, et al. Glucocorticoids and selumetinib are highly synergistic in RAS pathway mutated child- hood acute lymphoblastic leukemia through upregulation of BIM. Haematologica. 2019;104(9):1804-1811.
47. Agraz-Doblas A, Bueno C, Bashford- Rogers R, et al. Unraveling the cellular ori- gin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis. Haematologica. 2019;104(6):1176-1188.
48. Marschalek R. Another piece of the puzzle added to understand t(4;11) leukemia bet- ter. Haematologica. 2019;104(6):1098- 1100.
49.Bueno C, Calero-Nieto FJ, Wang X, et al. Enhanced hemato-endothelial specification during human embryonic differentiation through developmental cooperation between AF4-MLL and MLL-AF4 fusions. Haematologica. 2019;104(6):1189-1201. Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacody- namic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477-3483.
51. Brown PA, Kairalla J, Hilden JM, et al. FLT3 inhibitor correlative laboratory assays impact outcomes in KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) patients treated with lestaurtinib: AALL0631, a Children's Oncology Group Study. Blood. 2019;134(S1):1293.
52. Cooper TM, Cassar J, Eckroth E, et al. A phase I study of quizartinib combined with chemotherapy in relapsed childhood leukemia: a therapeutic advances in Childhood Leukemia and Lymphoma (TACL) Study. Clin Cancer Res. 2016;22 (16):4014-4022.
53. Bernt KM, Zhu N, Sinha AU, et al. MLL- rearranged leukemia is dependent on aber- rant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66-78.
54. Daigle SR, Olhava EJ, Therkelsen CA, et al.
50.
haematologica | 2021; 106(4)
1077