Page 35 - 2021_03-Haematologica-web
P. 35

Targeting of FLT3 AML
leukemia activity and reversible hematolog-
ical toxicity. Mol Ther. 2020;28(3):889-900.
89. Reiter K, Polzer H, Krupka C, et al. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 2018;32(2):
313-322.
90. Reindl C, Bagrintseva K, Vempati S, et al.
Point mutations in the juxtamembrane domain of FLT3 define a new class of acti- vating mutations in AML. Blood. 2006;107(9):3700-3707.
91. Ma HS, Nguyen B, Duffield AS, et al. FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia. Cancer Res. 2014;74(18):5206-5217.
92. Stirewalt DL, Meshinchi S, Kussick SJ, et al. Novel FLT3 point mutations within exon 14 found in patients with acute myeloid leukaemia. Br J Haematol. 2004;124(4):481- 484.
93. Chatain N, Perera RC, Rossetti G, et al. Rare FLT3 deletion mutants may provide addi- tional treatment options to patients with AML: an approach to individualized medi- cine. Leukemia. 2015;29(12):2434-2438.
94.Williams AB, Nguyen B, Li L, et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors.
Leukemia. 2013;27(1):48-55.
95. Smith CC, Zhang C, Lin KC, et al.
Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “Gatekeeper” F691L mutation with PLX3397. Cancer Discov. 2016;5(6):668-679.
96. Opatz S, Polzer H, Herold T, et al. Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. Blood. 2013;122(10):1761-1769.
97. Pauwels D, Sweron B, Cools J. The N676D and G697R mutations in the kinase domain of FLT3 confer resistance to the inhibitor AC220. Haematologica. 2012;97(11):1773- 1774.
98. Piccaluga PP, Bianchini M, Martinelli G. Novel FLT3 point mutation in acute myeloid leukaemia. Lancet Oncol. 2003;4(10):604.
99. Albers C, Leischner H, Verbeek M, et al. The secondary FLT3-ITD F691L mutation induces resistance to AC220 in FLT3-ITD + AML but retains in vitro sensitivity to PKC412 and Sunitinib. Leukemia. 2013;27(6):1416-1418.
100. Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol. 2001;113 (4):983-988.
101. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the acti-
vation loop of FLT3 in human hematologic
malignancies. Blood. 2001;97(8):2434-2439. 102. Spiekermann K, Bagrintseva K, Schoch C, Haferlach T, Hiddemann W, Schnittger S. A new and recurrent activating length muta- tion in exon 20 of the FLT3 gene in acute myeloid leukemia. Blood. 2002;100(9):3423-
3425.
103. Jiang J, Paez JG, Lee JC, et al. Identifying and
characterizing a novel activating mutation of the FLT3 tyrosine kinase in AML. Blood. 2004;104(6):1855-1858.
104.Matsuno N, Nanri T, Kawakita T, Mitsuya H, Asou N. A novel FLT3 activation loop mutation N841K in acute myeloblastic leukemia. Leukemia. 2005;19(3):480-481.
105.Schittenhelm MM, Yee KWH, Tyner JW, et al. FLT3 K663Q is a novel AML-associated oncogenic kinase: determination of bio- chemical properties and sensitivity to suni- tinib (SU11248). Leukemia. 2006;20(11): 2008-2014.
106.Kindler T, Breitenbuecher F, Kasper S, et al. Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood. 2005;105(1):335-340.
107.
Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260-263.
haematologica | 2021; 106(3)
681


































































































   33   34   35   36   37