Page 34 - 2021_03-Haematologica-web
P. 34
A.J. Ambinder and M. Levis
patients without NPM1 mutation. Bone
Marrow Transplant. 2020;55(4):740-748.
42. Schwartz GW, Manning B, Zhou Y, et al. Classes of ITD predict outcomes in AML patients treated with FLT3 inhibitors. Clin
Cancer Res. 2019;25(2):572-583.
43. Liu SB, Dong HJ, Bao XB, et al. Impact of
FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica. 2019;104(1):e9-e12.
44. Murphy KM, Levis M, Hafez MJ, et al. Detection of FLT3 internal tandem duplica- tion and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagnostics. 2003;5(2):96-102.
45. Polz MF, Cavanaugh CM. Bias in template- to-product ratios in multitemplate PCR. Appl Environ Microbiol. 1998;64(10)3724- 3730.
46. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-2074.
47. Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488-1495.
48.Garg S, Reyes-Palomares A, He L, et al. Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood. 2019;134(3):263-276.
49. Burchert A, Bug G, Finke J, et al. Sorafenib as maintenance therapy post allogeneic stem cell transplantation for FLT3-ITD positive AML: results from the randomized, double- blind, placebo-controlled multicentre Sormain trial. Blood. 2018;132(Supplement 1):661.
50. Maziarz RT, Fernandez H, Patnaik MM, et al. Radius: midostaurin (mido) plus standard of care (SOC) after allogeneic stem cell trans- plant (alloSCT) in patients (pts) with FLT3- internal tandem duplication (ITD)-mutated acute myeloid leukemia (AML). Biol Blood Marrow Transplant. 2019;25(3):S11-S12.
51.Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3 -mutated AML. N Engl J Med. 2019;381(18):1728-1740.
52. Smith CC, Paguirigan A, Jeschke GR, et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single- cell analysis. Blood. 2017;130(1):48-58.
53. Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacodynam- ic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477-3483.
54. Pratz KW, Cortes J, Roboz GJ, et al. A phar- macodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood. 2009;113(17):3938- 3946.
55. Lee LY, Hernandez D, Rajkhowa T, et al. Preclinical studies of gilteritinib, a next-gen- eration FLT3 inhibitor. Blood. 2017;129(2):257-260.
56.Levis M. Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Futur Oncol. 2014;10(9):1571-1579.
57. O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demon- strates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res. 2003;9(15):5465- 5476.
58. Smith BD, Levis M, Beran M, et al. Single- agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in
patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103(10): 3669-3676.
59. Röllig C, Serve H, Hüttmann A, et al. Addition of sorafenib versus placebo to stan- dard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicen- tre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691-1699.
60. Rydapt [package insert]. East Hanover, NJ. Novartis Pharmaceuticals Corporation. 2017. https://www.accessdata.fda.gov/ drugsatfda_docs/label/2017/207997s000lbl. pdf.
61.Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54-60.
62.Fischer T, Stone RM, DeAngelo DJ, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28(28):4339-4345.
63.Levis M, Shi W, Chang K, et al. FLT3 inhibitors added to induction therapy induce deeper remissions. Blood. 2020;135 (1):75-78.
64. Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017;18(8): 1061-1075.
65.MacMahon CM, Canaani J, Rea B, et al. Mechanisms of acquired resistance to gilter- itinib therapy in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood. 2017;130(Supplement 1):295-295.
66. Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a mul- ticentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984- 997.
67. Cortes JE, Kantarjian HM, Kadia TM, et al. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. J Clin Oncol. 2016;34(15_suppl):7008.
68.Galanis A, Ma H, Rajkhowa T, et al. Crenolanib is a potent inhibitor of flt3 with activity against resistance-Conferring point mutants. Blood. 2014;123(1):94-100.
69.Zhang H, Savage S, Schultz AR, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun. 2019;10(1):244. Goldberg AD, Coombs CC, Wang ES, et al. Younger patients with newly diagnosed FLT3-mutant AML treated with crenolanib plus chemotherapy achieve adequate free crenolanib levels and durable remissions. Blood. 2019;134(Supplement_1):1326.
71. Yamaura T, Nakatani T, Uda K, et al. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood. 2018;131(4):426- 438.
72. Sato T, Yang X, Knapper S, et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood. 2011;117(12):3286- 3293.
73. Ueno Y, Mori M, Kamiyama Y, Kaneko N, Isshiki E, Takeuchi M. Gilteritinib (ASP2215), a Novel FLT3/AXL Inhibitor:
Preclinical Evaluation in Combination with Azacitidine in Acute Myeloid Leukemia. Blood. 2016;128(22):2830-2830.
74. Swaminathan M, Kantarjian HM, Daver N, et al. The combination of quizartinib with azacitidine or low-dose cytarabine is highly active in patients (Pts) with FLT3-ITD mutated myeloid leukemias: interim report of a phase I/II trial. Blood. 2017;130 (Supplement 1):723.
75. Ma J, Zhao S, Qiao X, et al. Inhibition of Bcl- 2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin Cancer Res. 2019;25(22):6815-6826.
76. Perl AE, Daver NG, Pratz KW, et al. Venetoclax in combination with gilteritinib in patients with relapsed/refractory acute myeloid leukemia: a phase 1b study. Blood. 2019;134(Supplement_1):3910.
77. Breccia M, Loglisci G, Loglisci MG, et al. FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica. 2013;98(12):e161.
78. Daver N, Kantarjian H, Marcucci G, et al. Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis. Br J Haematol. 2015;168(5):646-653.
79. Esnault C, Rahmé R, Rice KL, et al. FLT3- ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood. 2019;133(13):1495-1506.
80. Taylor SJ, Dagger SA, Thien CBF, Wikstrom ME, Langdon WY. Flt3 inhibitor AC220 is a potent therapy in a mouse model of myelo- proliferative disease driven by enhanced wild-type Flt3 signaling. Blood. 2012;120 (19):4049-4057.
81. Cortes J, Perl AE, Döhner H, et al. Quizartinib, an FLT3 inhibitor, as monother- apy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 2018;19(7):889-903.
82. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275-1291.
83. Bibault JE, Figeac M, Hélevaut N, et al. Next- generation sequencing of FLT3 internal tan- dem duplications for minimal residual dis- ease monitoring in acute myeloid leukemia. Oncotarget. 2015;6(26):22812-22821.
84. Thol F, Gabdoulline R, Liebich A, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132 (16):1703-1713.
85. Levis MJ, Perl AE, Altman JK, et al. A next- generation sequencing–based assay for min- imal residual disease assessment in AML patients with FLT3 -ITD mutations. Blood Adv. 2018;2(8):825-831.
86. Blätte TJ, Schmalbrock LK, Skambraks S, et al. getITD for FLT3-ITD-based MRD moni- toring in AML. Leukemia. 2019;33(10):2535- 2539.
87. Rudra-Ganguly N, Lowe C, Virata C, et al. AGS62P1, a novel anti-FLT3 antibody drug conjugate, employing site specific conju- gation, demonstrates preclinical anti- tumor efficacy in AML tumor and patient derived xenografts. Blood. 2015;126(23): 3806-3806.
88. Yeung YA, Krishnamoorthy V, Dettling D, et al. An pptimized full-length FLT3/CD3 bis- pecific antibody demonstrates potent anti-
70.
680
haematologica | 2021; 106(3)