Page 123 - 2021_03-Haematologica-web
P. 123
Slc35a1 deficiency and thrombocytopenia
receptor-expressing liver macrophages and
hepatocytes. Blood. 2009;114(8):1645-1654. 18. Lee-Sundlov MM, Ashline DJ, Hanneman AJ, et al. Circulating blood and platelets sup- ply glycosyltransferases that enable extrinsic extracellular glycosylation. Glycobiology.
2017;27(2):188-198.
19. Wandall HH, Rumjantseva V, Sorensen AL,
et al. The origin and function of platelet gly- cosyltransferases. Blood. 2012;120(3):626- 635.
20. Willig TB, Breton-Gorius J, Elbim C, et al. Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sia- lyl-Lewis-X antigen in leukocytes--a new syndrome? Blood. 2001;97(3):826-828.
21. Martinez-Duncker I, Dupre T, Piller V, et al. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood. 2005;105(7):2671-2676.
22. Mohamed M, Ashikov A, Guillard M, et al. Intellectual disability and bleeding diathesis due to deficient CMP--sialic acid transport. Neurology. 2013;81(7):681-687.
23.Kauskot A, Pascreau T, Adam F, et al. A mutation in the gene coding for the sialic acid transporter SLC35A1 is required for platelet life span but not proplatelet forma- tion. Haematologica. 2018;103(12):e613- e617.
24. Nji E, Gulati A, Qureshi AA, et al. Structural basis for the delivery of activated sialic acid into Golgi for sialylation. Nat Struct Mol Biol. 2019;26(6):415-423.
25.Fu J, Gerhardt H, McDaniel JM, et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and conse- quent fatty liver disease in mice. J Clin Invest. 2008;118(11):3725-3737.
26. Pan Y, Yago T, Fu J, et al. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interac- tion with platelets. Blood. 2014;124(24): 3656-3665.
27. Herisson F, Frodermann V, Courties G, et al.
Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018;21(9):1209-1217.
28. Jones MB, Oswald DM, Joshi S, et al. B-cell- independent sialylation of IgG. Proc Natl Acad Sci U S A. 2016;113(26):7207-7212.
29. Nagel T, Meyer B. Simultaneous characteri- zation of sequence polymorphisms, glyco- sylation and phosphorylation of fibrinogen in a direct analysis by LC-MS. Biochim Biophys Acta. 2014;1844(12):2284-2289.
30. George JN. Platelet IgG: measurement, inter- pretation, and clinical significance. Prog Hemost Thromb. 1991;10:97-126.
31. George JN, Saucerman S. Platelet IgG, IgA, IgM, and albumin: correlation of platelet and plasma concentrations in normal subjects and in patients with ITP or dysproteinemia. Blood. 1988;72(1):362-365.
32. Michelson AD, Cattaneo M, Frelinger A, et al. (editors). Platelets (4th edition). Elsevier 2019; 79-97.
33. Bergmeier W, Piffath CL, Cheng G, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res. 2004;95(7):677-683.
34. Jansen AJ, Josefsson EC, Rumjantseva V, et al. Desialylation accelerates platelet clear- ance after refrigeration and initiates GPIba metalloproteinase-mediated cleavage in mice. Blood. 2012;119(5):1263-1273.
35. Draper JE, Sroczynska P, Leong HS, et al. Mouse RUNX1C regulates premegakary- ocytic/erythroid output and maintains sur- vival of megakaryocyte progenitors. Blood. 2017;130(3):271-284.
36. Draper JE, Sroczynska P, Tsoulaki O, et al. RUNX1B expression is highly heteroge- neous and distinguishes megakaryocytic and erythroid lineage fate in adult mouse hematopoiesis. PLoS Genet. 2016;12(1): e1005814.
37. Albu RI, Constantinescu SN. Extracellular domain N-glycosylation controls human thrombopoietin receptor cell surface levels. Front Endocrinol (Lausanne). 2011;2:71.
38. Sorensen AL, Hoffmeister KM, Wandall HH. Glycans and glycosylation of platelets: cur- rent concepts and implications for transfu- sion. Curr Opin Hematol. 2008;15(6):606- 611.
39. Eckhardt M, Muhlenhoff M, Bethe A, Gerardy-Schahn R. Expression cloning of the Golgi CMP-sialic acid transporter. Proc Natl Acad Sci U S A. 1996;93(15):7572-7576.
40. Jones C, Denecke J, Strater R, et al. A novel type of macrothrombocytopenia associated with a defect in alpha2,3-sialylation. Am J Pathol. 2011;179(4):1969-1977.
41. Ellies LG, Ditto D, Levy GG, et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by con- cealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A. 2002;99(15): 10042-10047.
42. Grozovsky R, Giannini S, Ramsey H, Sola- Visner M, Hoffmeister KM. T-antigen expression causes macrothrombocytopenia and extensive hemophagocytosis in mice lacking the sialyltransferase ST3Gal-I specif- ically in megakaryocytes. Blood. 2014;124 (21):94.
43. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996;87(6):2162-2170.
44. Jansen AJ, Josefsson EC, Rumjantseva V, et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood. 2012;119(5):1263-1273.
45.Li J, van der Wal DE, Zhu G, et al. Desialylation is a mechanism of Fc-indepen- dent platelet clearance and a therapeutic tar- get in immune thrombocytopenia. Nat Commun. 2015;6:7737.
46.Zhang XH, Wang QM, Zhang JM, et al. Desialylation is associated with apoptosis and phagocytosis of platelets in patients with prolonged isolated thrombocytopenia after allo-HSCT. J Hematol Oncol. 2015; 8:116.
haematologica | 2021; 106(3)
769